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We previously demonstrated that it is possible to learn position-inde- 
pendent responses to rotation and dilation by filtering rotations and 
dilations with different centers through an input layer with MT-like 
speed and direction tuning curves and connecting them to an MST- 
like layer with simple Hebbian synapses (Sereno and Sereno 1991). By 
analyzing an idealized version of the network with broader, sinusoidal 
direction-tuning and linear speed-tuning, we show analytically that 
a Hebb rule trained with arbitrary rotation, dilation/contraction, and 
translation velocity fields yields units with weight fields that are a 
rotation plus a dilation or contraction field, and whose responses to a 
rotating or dilating/contracting disk are exactly position independent. 
Differences between the performance of this idealized model and our 
original model (and real MST neurons) are discussed. 

1 Introduction 

A major stream of motion information processing in the primate visual 
system goes from layer 4B in primary visual cortex (Vl)  to the middle 
temporal area (MT) and then to the medial superior temporal area (MST) 
(for reviews see Sereno and Allman 1991; Felleman and Van Essen 1991). 
Most neurons in area MT have moderate-sized receptive fields, and a 
subset is tuned to the local pattern velocity (Movshon et al. 1985). Neu- 
rons in the dorsal part of MST, by contrast, have much larger receptive 
fields and some are selective to higher order motion features-for ex- 
ample, rotation (either clockwise or counterclockwise, but not both), and 
dilation or contraction (but not both) on the frontoparallel plane (Saito 
et al. 1986; Sakata et al. 1986; Tanaka and Saito 1989; Tanaka et al. 1989; 
Duffy and Wurtz 1991a,b). Detecting rotation, dilation, and contraction 
provides useful information about an animal's motion relative to the en- 
vironment or about the intrinsic motion of an object (Koenderink and 
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van Doorn 1975, 1976; Longuet-Higgins and Prazdny 1980; Koenderink 
1986). 

An interesting property is that some dorsal MST neurons give nearly 
identical responses to a rotation, or dilation or contraction, no matter 
where the center of the velocity flow is located. We sought to find a 
neural mechanism for this position invariance. To be selective to a rota- 
tion or dilation/contraction with a fixed center, the receptive field of an 
MST neuron need just be composed of the MT neurons whose preferred 
directions are arranged circularly or radially around that center (Saito et 
al. 1986). At first glance, this simple mechanism would not seem to be 
able to support an invariant response when the position of the center 
changes (Saito et a l .  1986; Tanaka et al. 1989; Duffy and Wurtz 1991b). 

Two previous proposals for a position-independent mechanism as- 
sume a homogeneous organization for an MST receptive field to ensure 
that all its subfields have identical structure and function. In one model, 
the local rotation and dilation of the velocity field is first derived and then 
summed up across space to get invariant responses (Duffy and Wurtz 
1991b). This algorithm requires that MT neurons be selective to local ro- 
tation and dilation/contraction, which is generally not the case (Tanaka 
et al .  1986). Another model makes use of partially overlapping com- 
partments in an MST receptive field (Saito et al. 1986). But this model 
needs a special surround effect in MT neurons to prevent many com- 
partments from being activated simultaneously, the exact mechanism of 
which awaits further experimental proof. 

A simpler yet counterintuitive solution was discovered in a computer 
simulation experiment using a feedforward network and unsupervised 
learning (Sereno and Sereno 1990, 1991). That work was based on a pre- 
vious study in which Hebbian learning was used to find a solution to the 
aperture problem in a two-layer feedforward network corresponding to 
the connections from V1 + MT (Sereno 1989). When a similar network 
(with a larger interlayer divergence) representing MT --$ MST connec- 
tions is trained with rotation, dilation, and contraction using a Hebb rule 
and input-layer units with MT-like tuning curves, MST-like units with 
position-independent responses emerge. Surprisingly, such rotation or 
dilation/contraction detectors turned out to have inhomogeneous recep- 
tive fields with a circular, spiral, or radial arrangement of local direction 
selectivity, just as in the simple mechanism mentioned before. 

In this letter we analyze a modified version of the original model in 
Sereno and Sereno (1991). The input layer of the modified model has 
broader (cosine) tuning curves than in the original model (and broader 
than those of real MT neurons), but it allows us to derive explicit ex- 
pressions for the course of learning empirically observed in the original 
model. The modified model gives rise to MST-like units that linearly 
decompose the flow field into flow field components-for example, a 
clockwise rotation-preferring unit will respond as well to the rotation in 
a clockwise spiral as to a pure clockwise rotation, ignoring any added di- 
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lation/contraction. By contrast, in our original model, the sharper tuning 
curves for the MT-like units result in MST-like units whose response falls 
off as other optic flow components are added. This smooth fall-off has 
also been observed with real MST neurons (Graziano et al. 1990; Orban 
et al .  1992). It is important to note, however, that the basic mechanism 
of position-invariant response to flow field stimuli (a position-variant 
direction-tuning template) is identical in both the idealized model with 
cosine tuning curves as well as the original model with narrower tuning 
curves. Linear decomposition might yet be found in areas beyond MST. 
It would be useful for filtering out certain movement components (e.g., 
translation) while exactly signaling the magnitude of others of interest 
(e.g., dilation). On the other hand, tighter input-layer tuning curves al- 
low individual output layer units to code more information about a flow 
field (see Discussion). 

2 A Mechanism for Position Independence 

First, we show the basic principles for the position-independent respon- 
ses, as initially revealed by computer simulation (and recently indepen- 
dently derived in similar form by Poggio et al. 1990, 1991). Let v = v(r) 
be the velocity field on the image plane (frontoparallel plane), where the 
vector r = xi + yj  denotes the position with i and j being the unit vectors 
of x and y axes. Consider MT-like units that are sensitive to the local 
stimulus velocities v. Each MT-like unit has a preferred direction. Given v 
as the stimulus velocity at a fixed position, the response or activation a 
of the MT-like unit at that position is assumed to be proportional to the 
velocity component in the preferred direction, or 

(2.1) 

where v = 1vJ is the stimulus speed, c is a constant coefficient representing 
the slope of the (linear) speed tuning, Q is the direction angle of v, and d, 
is the unit vector for the preferred direction angle 0. In other words, the 
unit has linear response to the speed v and a sinusoidal direction tuning 
curve with the maximum at the preferred direction QJ (Fig. 1). 

The artificial MT-like units resemble the real neurons in area MT of 
monkey in certain respects (Rodman and Albright 1987). For most MT 
neurons, speed does not alter the shape of direction tuning curves, which 
implies a multiplicative interaction of the speed tuning and the direction 
tuning as used in expression 2.1. The linear speed tuning is a reasonable 
approximation for small speeds, although the response is sometimes re- 
duced when the speed exceeds an optimum value. The sinusoidal direc- 
tion tuning is broader than a typical real MT neuron (Maunsell and Van 
Essen 1983). Also, the responses of real MT neurons to the antipreferred 
direction are usually smaller. We retain expression 2.1 for its simplicity 
and ease of analysis. 

u = cv COS(Q - 4) = cdm . v 
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Figure 1: A family of direction tuning curves for different speeds. 

Now consider an MST-like unit that receives inputs from many MT- 
like units. It is convenient to define the weight vector field of an MST-like 
unit. For any position on the image plane, we define the weight vector 
w at that point as 

w = cwdd (2.2) 

where d4 is the preferred direction of the MT-like unit at that position, w 
is the scalar weight for its connection to the MST-like unit, and c is the 
same constant coefficient as in 2.1. The total input I to the MST-like unit 
is assumed to be the weighted sum of the inputs from all the MT-like 
units within the receptive field of the MST-like unit: 

where the simple relation (see equations 2.1 and 2.2) wa = wcdd.  v = w v 
has been used. The output of the MST-like unit is simply 

0 = o(I) 

where CT( ) is a sigmoid function. 

namely, 
If the weight vector field of an MST-like unit is itself a rotational field, 

(2.4) 

where vector = flk can be regarded as the ”angular velocity” for the 
weight vector field w, with k being the unit vector of the z axis (perpen- 
dicular to the image plane), then we can prove that the MST-like unit’s 
response 0 to a rotating disk of angular velocity w = wk depends only 
on the angular speed w of the stimulus but not on the location of the 
stimulus disk. 

w = o x r = -Ryi + nxj 
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Figure 2: Response elicited by a rotating (a) or dilating (b) ring in a receptive 
field with circular or radial distribution of direction selectivity is independent 
of the position of the ring (see text). 

To show this, decompose the stimulus disk into many concentric rings 
and calculate the response elicited by a single rotating ring of radius R 
and width AR (Fig. 2a). Let v be the velocity field of the stimulus ring, 
and AI = w .  v be the increment to the total input to the MST-like unit 
contributed by all the MT-like units within the area covered by the ring. 
We treat the weight vector field w = w ( r )  as depending continuously on 
the position r. The number of units for a unit area on the image plane is 
assumed to be a constant, and is taken as unity for simplicity. Replacing 
the sum by the integration along the ring, we get 

AI = AR W .  vdl = vAR w 3 dl = vAR (V x W) . kdS (2.5) f f h 
where dl = (v/v)dl with v/v being the unit vector in the circular direction, 
and S is the area enclosed by the ring. The last equality is a direct 
application of Stokes’ theorem, where dS is the area element. Since the 
weight vector field 2.4 has a constant curl V x w = ( d w y / d x  - dw,/dy)k = 
2Rk, the last integral in equation 2.5 is equal to Js 2R dS = 27rRR2. Since 
the rotational speed v of the stimulus ring is proportional to its radius 
(v = wR), we finally obtain 

AI = 2riwRR3AR 
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which is independent of the position of the stimulus ring. The total 
response to the disk of radius p is therefore 

o = q) = (iiwnp4/2) 

which is also position independent. If the angular speed w changes sign, 
that is, the disk rotates in the opposite direction, the total input I also 
changes sign. 

To get position-independent responses to dilation or contraction, just 
let the weight vector field be 

w = Ar = Axi + Ayj (2.6) 

which is itself a "dilation" when constant A > 0 and a "contraction" 
when A < 0. This vector field has constant divergence V . w = dw,/dx + 
dw,/ay = 2A (cf. the expression for constant curl above, except that div is 
a scalar). The response elicited by a dilating ring (Fig. 2b) is independent 
of the position of its center. The proof is similar, but Gauss' theorem is 
used to evaluate the integral: 

V . wdS = 2dl lR3  

where n = v/v is the unit vector in the radial direction of the ring, and 
u = XR, where X specifies the rate of dilation (as w specifies the rotation 
speed). It follows that the response to a dilating disk is also position 
independent. In the case that the stimulus is a contraction, the input just 
changes sign. 

This result can be intuitively appreciated by considering Figure 3. 
In (a), the stimulus is centered. Since the local stimulus direction v(r) 
always agrees with the weighted local preferred direction wd(r) in the 
receptive field, the dot product between each pair is positive, though 
small. In (b), with the stimulus center situated to the right of the receptive 
field center, local direction selectivity and local stimulus direction clash 
near the center of the receptive field-the dot products there are actually 
negative; but the negative terms are compensated, exactly, as we have 
seen, by the larger positive dot products in the periphery of the receptive 
field. 

3 Development of Weight Vector Field under a Hebb Rule 

Now we consider the general manner in which weight vector field 
changes during Hebbian learning. At each position on the image plane 
we use a set of MT-like units with different preferred directions. Let 
w4(r) denote the weight of the MT-like unit at position r with preferred 
direction 4 .  As before, the response or activation of the MT-like unit to 
the velocity field v(r) is 

(3.1) a&) = cdr)dc$ ' v(r) 
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Figure 3: An intuitive interpretation of the mechanism for position indepen- 
dence. Negative dot products near the center of the receptive field in (b) are 
compensated by larger ones peripherally to give the same sum as in (a). 

Figure 4: Each unit in the MST layer receives inputs from MT-like units at 
different positions and with different preferred directions (indicated by arrows). 

and the weight vector is defined as w#(r) = c,(r)w$(r)d$, with d, again 
being the unit vector for the preferred direction of an MT-like unit. The 
total input I to the MST-like unit is the weighted sum of the responses 
from all MT-like units within the receptive field (Fig. 4), i.e., summing 
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over different positions in the receptive field as well as different preferred 
directions: 

where the identity w+(r)a4(r) = w4(r)c4(r)d4 . v(r) = w4(r) . v(r) is used. 
We can treat the system as if there were only one MT-like unit specified 

by the weight vector at each position (call this the equivalent weight 
vector) 

so we can write equation 3.2 as 

I = w(r) + v(r) (3.3) 
r 

which is exactly the same as expression 2.3 in the previous section. As 
before, the output of the MST-like unit is 

0 = a( I )  

Suppose the increment of the weight in each training step follows a 
simple Hebb rule 

Aw4(r) = ea4(r)0 (3.4) 

In the present model no explicit distinction has been made between exci- 
tatory and inhibitory synaptic connections, and the weights are allowed 
to change sign. Since w(r) = c4(r)w4(r)d4, the corresponding incre- 
ment of the equivalent weight vector field is 

where the last equality is obtained by substituting equation 3.1 into 3.4. 
The coefficient q ( r )  is assumed to be a random variable with uniform 
distribution across the angle 4. Let cz be the average of c$(r). It is 
assumed to be a constant across the image plane. As an approximation 
for large number of units, we have 

Aw(r) = c? E [ d +  . cOv(r)]d4 
4 

(3.5) 

To simplify this expression, first note that if there are n(> 3) unit 
vectors Id4} distributed evenly around the unit circle, then 

(3.6) 
n 
2 C ( d 4 .  V)d+ = -V 

4 
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holds for all vector V. For a proof, write each vector as a complex num- 
ber, namely, V = pe" and dm = e'*, where 8 is the direction angle of V and 
p = (VI is the radius. Because d4 V = pcos(B - @) = i p  (el(q-wl + ,-Ifq-@) 

is a real number, we have 
1 

Since q is evenly distributed around the circle, Coe214 = 0. This proves 
equation 3.6. 

Assuming that the preferred directions of the MT-like units at each 
spatial position are evenly distributed, we can employ formula 3.6 by 
identifying V with c-%Ov(r) so that equation 3.5 can be rewritten as 

1 -  
Aw(r) = -ndOv(r) (3.7) 2 

where M is the number of the MT-like units at each position. This incre- 
ment is caused by a single training step with the velocity field v(r). After 
training with a sequence of velocity fields, the equivalent weight vector 
field adds up to 

1 -  
w(r) = wo(r) + -mcZ Ov(r) 

2 t  
(3.8) 

where t(= 0.1; 2 , .  . .) stands for all time steps in the training and wo(r) 
is the initial weight vector. In conclusion, the final equivalent weight 
vector field is just proportional to the sum of the training velocity fields 
weighted by the corresponding responses of the MST-like unit. 

4 Training with Translation, Rotation, Dilation, and Contraction __ 

We are now ready to consider the training with translation, rotation, 
dilation, and contraction velocity fields. To begin with, suppose for a 
single training step the velocity field is a rotation centered at r, 

(4.1) 

and in different steps both the angular velocity w and the center r, vary 
randomly. Substituting equation 4.1 into 3.8 and ignoring the initial 
weight vector for its smallness, we obtain the final weight vector field 

v(r) = w x (r - r,) 

w(r) = qCOv(r)  = q 
t 

where q = n03/2 is a constant. This can be identified with the rotational 
field 

(4.2) w(r) = n x (r - ro) 
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+ 

Figure 5:  The final weight vector field is generally composed of a rotation field 
(b) and a dilation or contraction field (a). The result (c) is a spiral field. 

where the weight field "angular velocity" 0 and the weight field center 
ro are defined by n := 7 Et Ow and n x ro := 7 Ct(Ow x r,). The latter 
equation has a unique solution of ro as long as n # 0. In the special case 
n = 0, w(r) is a constant vector field (translation). 

Similarly, training with dilation or contraction 

v(r) = X(r - r,) 

with rate X and center r, varying in time will lead to the final weight 
vector field 

(4.3) 

where A := 7 Et OX and ArO := 7 Et OXr,. This is either a dilation (A > 0) 
or a contraction (A < 0). In the special case A = 0, w(r) is a constant 
(translation). 

Note that expressions 4.2 and 4.3 are just what are required for posi- 
tion-independent responses (cf. equations 2.4 and 2.6). It should be real- 
ized that the center ro does not affect the curl and divergence of a vector 
field, and thus does not affect our previous conclusions. 

For training with a mixture of translations, rotations, dilations, and 
contractions, it is readily shown by similar argument that the final weight 
vector field takes the form 

w(r) = h(r  - ro) 

w(r) = 0 x (r - a) + A(r - b) + c 

It can always be written equivalently as 

w(r) = 0 x (r - ro) + A(r - 10) 

which is a spiral centered at ro (Fig. 5). An MST-like unit with a spiral 
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weight vector field has position-independent responses to a particular 
sense of rotation as well as to either a dilation or contraction. 

Even if the training velocity fields have a zero average, for example, 
clockwise and counterclockwise rotations have an equal chance of ap- 
pearing, the weight vector field is still expected to grow with time. We 
consider the simple case where all rotations and dilations/contractions 
are centered at the same point so that the development of the two corre- 
sponding components is strictly independent. Consider the initial stage 
of development for training with, say, rotation fields alone. Now we 
need consider only the linear range of the sigmoid function 0, and for 
simplicity we assume 0 = I .  According to equations 3.7 and 3.3, at time 
step t + 1 

where the subscripts refer to time. Thus 

It can be expressed as 

Ot+i = Afltwt+i + q(Afltut) (Awtwt+l) (4.4) 

where Rt and ut are the angular speeds for the vector fields wt and vt at 
time t ,  respectively, and A is a constant depending on the size and shape 
of the receptive field as well as the position of the rotation center. 

Imagine an ensemble of parallel training sessions starting from differ- 
ent initial weights and using different rotation sequences of random an- 
gular speeds, which are independent of each other while having identical 
statistics. We take the ensemble average on both sides of equation 4.4 to 
get (Ot+l) = A (R,) ( w )  +qA2 (fl,) (w’) ( w ) ,  where the subscript for the an- 
gular speed w is dropped because the statistics of w does not change over 
time. If ( w )  = 0, then (Ot+l) = 0 for all t .  However, taking the ensemble 
average after squaring equation 4.4 and using (0:) = A2 (n:) (u2), we 
can obtain 

(o:+,) = (1 + 27E + aq2E2) (0:) 

where 

E := A ( w ’ ) = ( E v . v )  r 

a := (u4)>/(u’)2 

(4.5) 

are constants. When w is drawn from a gaussian distribution of zero 
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mean, for instance, CY = 3. Applying equation 4.5 iteratively yields 
(O:+,) = etIr (Oi), where constant 

7 := I /  In(1 + 2r/& + ruri2E2) 

Because 01 = E, w1 v1 and w1 = wo + r/Oovo zz rjOOv0 = rl(C, wo . VO)VO, 
by similar arguments as above we can get (0:) = Cyrl2E2 (0;). Hence 

(0:) = ort&2e(t-1) ’T (0;) (4.6) 

Consequently, when many MST-like units develop in parallel start- 
ing from random initial weights, the responses (either positive or nega- 
tive) to rotation and to dilation/contraction are expected to grow expo- 
nentially in the initial stage of development. The variety of the initial 
responses leads to a continuous spectrum of selectivity to rotation and 
dilation/contraction, which is what has actually been found in the neuro- 
physiological experiments (Duffy and Wurtz 1991a; Andersen et a l .  1991). 

5 Discussion 

The model provides a unified, albeit simplified, account for several es- 
sential properties of MST neurons and how they might develop. These 
properties include selectivity to rotation, dilation, and contraction, the 
position independence of the responses (Saito et al. 1986; Tanaka and 
Saito 1989; Tanaka et a / .  1989; Duffy and Wurtz 1991a,b), the selectivity 
to spiral velocity fields (Graziano et a/ .  1990; Andersen et a/ .  1991), and 
the continuous spectrum of selectivity (Duffy and Wurtz 1991a; Andersen 
et a / .  1991). The model’s response saturates at higher speeds (as a result 
of the sigmoid function) as does the response of real neurons (Orban et 
a/ .  1992). 

In addition to rotation and dilation/contraction, shear also naturally 
arises in the optic flow (Koenderink 1986). Since the linear combination 
of shear fields is still a shear, according to equation 3.8 the weight vector 
field itself will also have a shear component. Consistent with the model, 
neurons selective to shear components were also found in the cortical 
areas including MST (Lagae et a / .  1991). 

This model differs somewhat from the original model in Sereno and 
Sereno (1991) and from real MST neurons in that it ”linearly decomposes” 
the velocity field-that is, an MST-like unit will respond exclusively to 
the, say, rotational component of a flow field, regardless of the magni- 
tude of the radial component. Since a cosine tuning curve means that 
the input unit sees exactly the vector component of the local stimulus 
movement in the preferred (here rotational) direction, it leads to linear 
decomposition. With narrower tuning curves, the response of individual 
MST-like units provides more information about the exact composition of 
the flow field-for example, the extent to which it approximates a pure 
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rotation; nevertheless, approximate position independence with narrower 
tuning curves is still explained by a direction-template mechanism like 
that described above. 

Roughly speaking, learning with a simple Hebb rule tends to maxi- 
mize the total response by gradient ascent and thus tune the net to the 
input patterns that frequently occur. Consider the output 

The Hebb rule 

Aw, K IiO 

is always of the same sign as the gradient of the function E = io2: 
dE dO 
- = 0- = IiOd(I) 
dWi dWj 

because the derivative d is always positive. As a consequence, there 
should be a general tendency for local direction selectivity to be aligned 
with the direction of the stimulus velocity. 

Recently, it was demonstrated that although dilation-sensitive MSTd 
neurons are basically position invariant in their responses, they often re- 
spond best to dilations centered at a particular location in the receptive 
field (often not the receptive field center) (Duffy and Wurtz 1991c). Sim- 
ilar results were obtained in the simulations in Sereno and Sereno (1991) 
using MT-like (narrower) input-layer tuning curves. It may be advanta- 
geous to retain information about combinations of flow field components---
here, dilation and translation-in single units since these combinations 
can have particular behavioral relevance-for example, in signaling direc- 
tion of heading (Perrone 1992). More realistic peaked (instead of linear) 
speed tuning curves (Maunsell and Van Essen 1983) in the MT-like input 
layer could potentially sharpen the response to particular flow compo- 
nents since local speeds may be changed from the optimum as flow field 
components are added. Cross-direction inhibition (known to occur in 
MT: Snowden et al. 1991) could also be incorporated, effectively delet- 
ing portions of the flow field containing conflicting local motion signals. 
This could improve performance with more complex, real-world motion 
arrays. 

The rotation, dilation, and contraction velocity fields required for 
training are readily produced when an animal is moving around in a 
rigid environment. Exposure to such velocity fields may be crucial in 
order for a young animal to develop rotation and dilation ceIls in its vi- 
sual system. Human babies, for instance, can distinguish a rotation field 
from a random velocity field only after several months of visual experi- 
ence (Spitz et al. 1988). This could be tested by recording from MST in 
infant monkeys. 
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Feedforward networks using Hebb rules have been shown to be capa- 
ble of producing detectors selective to a hierarchy of features like those 
found in the successive stages of visual processing: center-surround units 
like those in the LGN (Linsker 1986a), orientation-selective units like sim- 
ple cells in V1 (Linsker 1986b), pattern motion units like some cells in 
MT (Sereno 1989), and finally position-independent rotation and dilation 
units like cells in dorsal MST (Sereno and Sereno 1991). The visual system 
may use simple local learning rules and a richly textured environment to 
build up complex filters in stages. This strategy could drastically reduce 
the amount of supervision that is required later on (cf. Geman et al. 1992) 
as the visual system learns to recognize objects and direct navigation and 
manipulation. 

Note Added in Proof 

Recently, Gallant et al. (1993) found that neurons in V4 respond selec- 
tively, and in a position-invariant way to static patterns containing con- 
centric, radiating, shearing, or spiral contours. The main outlines of our 
analysis could be extended to explain the selectivity and development of 
these neurons by substituting an orientation-selective input layer for the 
direction-selective input layer considered here. 
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