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Current population coding methods, including weighted averaging and
Bayesian estimation, are based on extrinsic representations. These re-
quire that neurons be labeled with response parameters, such as tuning
curve peaks or noise distributions, which are tied to some external, world-
based metric scale. Firing rates alone, without this external labeling, are
insufficient to represent a variable. However, the extrinsic approach does
not explain how such neural labeling is implemented. A radically dif-
ferent and perhaps more physiological approach is based on intrinsic
representations, which have access only to firing rates. Because neurons
are unlabeled, intrinsic coding represents relative, rather than absolute,
values of a variable. We show that intrinsic coding has representational
advantages, including invariance, categorization, and discrimination, and
in certain situations it may also recover absolute stimulus values.

1 Introduction

How do neurons encode the sensory, cognitive, and motor variables re-
quired to function in the world? The current consensus is that distributed
representations across neural populations are central to the coding process
in many situations. However, even within the population-coding paradigm,
there remain questions. Here we discuss two fundamentally different ways
of interpreting activities of neural populations, labeled and unlabeled,
which result in extrinsic and intrinsic representations, respectively. Labeled
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Figure 1: Schematic example of population coding. (a) Three stimulus values
individually presented to a population of seven neurons with gaussian tuning
curves. (b) Responses of the population to the three stimuli. (Adapted from
Sereno & Lehky, 2011.)

or extrinsic representations are currently the standard approach, but unla-
beled intrinsic representations are more physiological and may have inher-
ent benefits for some aspects of stimulus representations, such as invariance
and categorization.

In population coding, a variable is represented by the pattern of re-
sponses across a set of neurons (see Figure 1). Of critical importance are
the relative levels of activations of different neurons. The response of each
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neuron is ambiguous (more than one stimulus value can lead to the same
response), but the joint activity within the population resolves that ambi-
guity. The paradigmatic example of population coding is a set of neurons
with overlapping bell-shaped tuning curves (see Figure 1). However, tun-
ing curves need not be bell shaped, symmetric, or even nonmonotonic
(e.g., responses could be monotonic planes tilted at various angles within
the parameter space). What is necessary is ambiguity in the response of
each neuron, and that stimulus selectivity of different neurons overlap.
(Appendix A provides historical background.)

Population activity represents a stimulus by a vector of responses
(r1, r2, r3, . . . , rn), where ri indicates the response of an individual neuron.
A central concern in population coding theories is how to assign an in-
terpretation to that response vector and extract the stimulus value. Widely
used population methods include both deterministic approaches (weighted
averaging of tuning curve peaks or of the tuning curves themselves) and
probabilistic approaches (Bayesian estimation, maximum likelihood esti-
mation). These extrinsic methods have been exhaustively reviewed (Aver-
beck, Latham, & Pouget, 2006; Földiák, 1993; Oram, Földiák, Perrett, &
Sengpiel, 1998; Pouget, Dayan, & Zemel, 2000; Quian Quiroga & Panzeri,
2009; Sanger, 2003; Seung & Sompolinsky, 1993), and are summarized in
appendix B. What they all have in common is that they require each neuron
to be labeled with additional information (e.g., tuning curve shape, peak
value, noise distribution) beyond a simple firing rate.1 A less appreciated
alternative to these extrinsic methods is intrinsic population coding, based
solely on firing rate.

2 Defining Characteristics of Extrinsic and Intrinsic
Population Coding

Two characteristics distinguish extrinsic and intrinsic coding: labeled versus
unlabeled coding and atomistic versus relational coding.

2.1 Extrinsic Coding: Labeled, Atomistic. Extrinsic approaches to pop-
ulation coding require that each neuron be labeled with a parametric de-
scription of its response properties with respect to the external world. Know-
ing only firing rate to the current stimulus is insufficient for applying any of

1Nonsymmetry and other irregularities in tuning curve shape are a problem for some
extrinsic methods (e.g., weighted peak averaging method) but not others (e.g., basis
function or Bayesian methods). While dealing with the particulars of tuning curve shape
is not a conceptual problem for extrinsic methods in general, it does present a practical
data collection problem during the application of many such methods. That is due to the
difficulty in measuring the detailed shapes of tuning curves (or probabilistic functions
dependent on tuning curve shape) for an entire population in order to label neurons with
that information.
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these algorithms. For example, according to Pouget et al. (2000), maximum
likelihood estimation requires “precise measurement of the tuning curves
and noise distributions of each neuron.” The particular extrinsic method
used determines which label is required. Weighted peak averaging, for ex-
ample, requires that neurons be labeled only with the values of their tuning
curve peaks.

Labels within extrinsic coding provide a coordinate system or reference
frame, independent of the neural firings themselves, that allows extraction
of absolute stimulus values from the population response. Since labeling
is in terms of some external (nonneural) variable tied to a state of the
physical world, it provides external information that allows the population
to be interpreted in physical world coordinates. These labels associated
with extrinsic coding provide an external frame of reference that allows
individual stimuli to be represented independent of other stimuli. Extrinsic
coding therefore represents stimuli in an atomistic manner.

2.2 Intrinsic Coding: Unlabeled, Relational. In contrast, intrinsic cod-
ing bases its representation purely on neural firing rates without any addi-
tional information. Intrinsic coding, having no labels to the external world,
cannot represent the absolute value of a single stimulus, only relative
values of multiple stimuli. It therefore represents stimuli in a relational man-
ner. Many current implementations of this approach use multidimensional
scaling methods (we provide examples later in this view). Advocacy for the
potential usefulness of representing stimuli relationally rather than atom-
istically can be found in experimental psychology (Shepard & Chipman,
1970) (calling the concept second-order isomorphism), as well as compu-
tational vision (Edelman, 1998, 1999) and philosophy of mind (Church-
land, 2012; Churchland & Churchland, 2002). The distinction between
relational and atomistic representations in population coding has an-
tecedents in different philosophical traditions on the nature of represen-
tation (see appendix C).

3 Extrinsic Coding and the Labeling Problem

How is the labeling of neural activity required by extrinsic population cod-
ing implemented physiologically? How is this precise labeling transmitted
at each synapse? These questions that follow from the labeling hypothesis,
perhaps in some cases odd seeming, have not been explicitly recognized in
the extrinsic coding literature, much less addressed. In the laboratory, we
can externally label neurons through preliminary calibration experiments
and then use the results for later population decoding. Figure 2 illustrates
this labeling process for a population of motor neurons controlling the di-
rection of arm movements, using weighted peak averaging as the decoding
method (Georgopoulos, Caminiti, Kalaska, & Massey, 1983; Georgopou-
los, Kalaska, Caminiti, & Massey, 1982). For each neuron, responses were
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Figure 2: Labeling neurons for extrinsic population coding. (a) Activity of ex-
ample neuron in motor cortex when monkey performed two-dimensional arm
movements in different directions. (b) Tuning curve for direction of arm move-
ment for the example neuron. (c) Interpretation of population activity in motor
neurons using weighted averaging of tuning curve peaks. Black lines indicate
responses of individual neurons. Line length is a function of firing rate, and line
orientation indicates the direction of tuning curve peak. Orientation of dashed
black lines shows arm movement directions assigned to population activity, cal-
culated by peak averaging of individual neural responses. For this procedure
to work, each neuron must be labeled with the value of its tuning curve peak,
derived from the sort of data shown in panels a and b. (Panels a and b adapted
from Georgopoulos et al., 1982; panel c adapted from Georgopoulos et al., 1983.)

collected for different movement directions (see Figure 2a), and a tuning
curve was fitted to that data (see Figure 2b). To perform the population
decoding (see Figure 2c), each neuron was then labeled with the value of
its tuning curve peak, which provided necessary external information in
addition to its firing rate. If we are interested in understanding how popu-
lation coding operates in vivo (i.e., during normal brain processing) using
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Figure 3: Intrinsic population decoding: Multidimensional scaling (MDS). Ex-
ample based on the tuning curves and stimuli in Figure 1a. (a) Responses of
neurons in the population to the three stimuli. (b) Response vectors for three
stimuli, which are the histograms in panel a displayed numerically. Distances
between response vectors are displayed in a distance matrix, which serves
as immediate input to the MDS algorithm. (c) Output of the MDS algorithm,
providing relative values of the three stimuli. (d) Procrustes transform of the
MDS output. Solid lines are original stimulus values as shown in Figure 1a,
and dashed lines are Procrustes-transformed MDS output. Stress is an error
measure. (Adapted from Sereno & Lehky, 2011.)

extrinsic methods, then we cannot ignore the problem of defining the bio-
logical basis of neural labeling inherent in such methods.

4 Multidimensional Scaling: An Illustration
of Intrinsic Representation

Multidimensional scaling (MDS) (Borg & Groenen, 2010; Shepard, 1980)
is an example of an intrinsic approach to interpreting population activity.
It utilizes only firing rate and does not require additional labeling. An
illustration of MDS is given in Figure 3, based on the same population of
seven neurons and the same set of three stimuli portrayed in Figure 1.
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Population responses to the three stimuli are shown in the histograms
of Figure 3a. Presenting those histograms in numerical form (see Figure 3b)
gives three response vectors. Crucially, no additional information (e.g., la-
beling of tuning curve peaks) is given in MDS to these individual response
vectors, unlike what occurs with labeled coding in extrinsic representations.
Rather, with intrinsic representations, we are interested in the relative values
(differences) between these response vectors (relational coding). Therefore,
distances between all response vectors are calculated, producing a distance
matrix (see Figure 3b). (The distance metric used is d = 1 − r, where r is the
correlation between pairs of response vectors.)

The distance matrix serves as input to the MDS algorithm, which per-
forms a dimensionality reduction (see appendix D) on the original seven-
dimensional population representation. MDS is able to reduce the three
points in the original 7D space to three points in a 1D space while still
keeping distances between points (relative positions) almost identical (see
Figure 3c). This implies that population responses to different stimuli are
confined to a 1D subspace embedded within the 7D representation space,
mirroring the 1D nature of the stimulus variable. (Figure 11 illustrates di-
mensionality reduction for a 3D representation space.) Because we cannot
visualize high-dimensional spaces, we cannot easily see that relationship
among population responses to different stimuli. By doing dimensionality
reduction, MDS makes that structure apparent.

Because we are dealing with the population in an intrinsic manner, at
no point were labels attached to neurons. Only firing rates were used. The
MDS output (see Figure 3c), based on unlabeled neural activity, recovers
only relative stimulus values. Compared to the original values (see Figure 1),
the scale is different and the stimulus order reversed, but relative values are
quite accurate. Precisely how accurate can be quantified using a Procrustes
transform (see Figure 3d).

Although an intrinsic representation was derived here from compar-
isons across multiple sensory stimuli, in principle one could also have com-
parisons between current sensory inputs and memory traces of previous
sensory inputs (Shepard & Podgorny, 1978). As Edelman (1999) suggested,
such memory traces could act as reference landmarks or prototypes within
a neural representation space, against which incoming stimuli could be
relationally encoded.

MDS or other dimensionality-reduction methods (see appendix D) do
not cause responses to lie on a low-dimensional manifold (i.e., subspace)
within the high-dimensional neural representation space. Rather, they re-
port whether such a low-dimensional manifold exists. We (Sereno & Lehky,
2011) and others (Churchland, 2012; Edelman & Intrator, 1997; Seung &
Lee, 2000) have previously suggested that such low-dimensional represen-
tations may be computationally advantageous in some cases, for exam-
ple, to more efficiently interface or communicate with other cortical areas.
These low-dimensional representations need not be made explicit but could
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remain implicit as low-dimensional subspaces embedded within a high-
dimensional space defined by the size of the encoding neural population.

Dimensionality reduction itself is not necessary for intrinsic representa-
tions. Despite the potential advantages of low-dimensional encoding, the
existence and usefulness of intrinsic encoding is conceptually independent
of whether representations are low dimensional or high dimensional.

5 Intrinsic Coding: Categorization and Discrimination

Categorization and discrimination, often considered separately, both in-
volve relationships among different stimuli (Lehky & Sereno, 2007). Stimuli
within the same category would be expected to cluster in the same region
of a representation space. Stimuli outside the category are more distant,
perhaps in another cluster. Discrimination suggests that even if the stim-
uli are within the same category or cluster, they are far enough apart to be
reliably distinguished. Relational representations provided by intrinsic cod-
ing make these geometrical relationships within the representation space
explicit.

In contrast, the atomistic representations that are produced by extrinsic
coding provide no inherent basis for clustering and discriminating stimuli.
To do categorization using an extrinsic representation, for example, would
require an additional level of processing to make explicit the geometrical
relationships among different stimuli within the parameter space. Intrinsic
representations already have such geometrical relationships built in as an
inherent part of the decoding process. For clarification, if clustering or
discrimination algorithms are applied to labeled neurons but the labeling
information is not used in the algorithm, then this would be intrinsic, not
extrinsic, coding.

To examine how population responses to different stimuli cluster, a num-
ber of studies have applied MDS to data from monkey cortex (Kayaert,
Biederman, & Vogels, 2005; Kiani, Esteky, Mirpour, & Tanaka, 2007; Lehky
& Sereno, 2007; Murata, Gallese, Luppino, Kaseda, & Sakata, 2000; Op de
Beeck, Wagemans, & Vogels, 2001; Rolls & Tovée, 1995; Young & Yamane,
1992). Here we highlight three examples: (1) visual responses in anterior in-
ferotemporal cortex (AIT) to simple 2D geometric shapes (Lehky & Sereno,
2007), (2) visual responses in AIT to faces (Young & Yamane, 1992), and
(3) nonvisual activity in anterior intraparietal cortex (AIP) associated with
different hand-grip shapes while grasping 3D objects (Murata et al., 2000).

In these studies, the population response to each stimulus was a point
within an n-dimensional representation space where n was sample popula-
tion size. To visualize relationships among population responses to differ-
ent stimuli, those high-dimensional representations were reduced to two
dimensions using MDS, keeping distances between stimuli as unchanged
as possible. The results show relative positions of shapes within the neural
representation space (see Figure 4), with a clustering of conditions with
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Figure 4: Examples of intrinsic population coding, based on multidimensional
scaling. (a) Relative positions of neural responses to simple geometrical shapes,
within a shape space derived from a population of cells in anterior inferotem-
poral cortex (AIT). (b) Relative positions of neural responses to faces, within
a face space derived from a population of AIT cells. (c) Relative positions of
neural activities corresponding to different hand grips when grasping objects
having various shapes, within a hand-shape space derived from a population
of cells in the anterior intraparietal (AIP) area. (Panel a adapted from Lehky &
Sereno, 2007; panel b adapted from Young & Yamane, 1992; panel c adapted
from Murata et al., 2000.)

similar characteristics. Likewise, data based on much larger sets of visual
shapes than in these examples have yielded impressive demonstrations of
categorization when interpreting population activities using intrinsic meth-
ods (Kiani et al., 2007; Kriegeskorte et al., 2008), reviewed by Kriegeskorte
(2009).

This approach to population coding stands in contrast to decades of
physiological work struggling to understand the features and categories
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of neural representations underlying object recognition through detailed
characterization of individual inferotemporal neurons, including attempts
to identify their optimal stimuli (essentially tuning curve peak) (Freiwald,
Tsao, & Livingstone, 2009; Fujita, Tanaka, Ito, & Cheng, 1992; Logothetis,
Pauls, & Poggio, 1995; Richmond, Optican, Podell, & Spitzer, 1987; Tanaka,
Saito, Fukada, & Moriya, 1991; Yamane, Carlson, Bowman, Wang, & Con-
nor, 2008), reviewed by (Kourtzi & Connor, 2011; Logothetis & Sheinberg,
1996; Tanaka, 1996). Such information is required to implement an extrinsic
population code. Intrinsic methods, using data-driven (agnostic) techniques
such as MDS (see Figure 4), are able to reveal relationships inherent in the
responses of neural populations to different object stimuli without any a pri-
ori knowledge or assumptions about the properties of individual neurons
or the structure of the categorization.

6 Intrinsic Coding: Representation of Visual Space

A number of neurophysiological studies have used MDS to analyze popu-
lation coding of visual shape (Kayaert et al., 2005; Kiani et al., 2007; Lehky
& Sereno, 2007; Murata et al., 2000; Op de Beeck et al., 2001; Rolls & Tovée,
1995; Young & Yamane, 1992). Only one has applied an intrinsic approach to
visual space (Sereno & Lehky, 2011). Using unlabeled neurons, it produced
a representation of visual space that was relational rather than atomistic.
Therefore, the global structure of space came out naturally without addi-
tional assumptions or analyses. It was possible to extract relative stimulus
positions from neural populations not only in the dorsal visual stream
(lateral intraparietal cortex) but also the ventral stream (anterior temporal
cortex) of monkeys. Further, whereas the dorsal representation of space
was quite metrically accurate, the ventral stream representation was only
topologically (or categorically) accurate.

A widespread view in studies of monkey extrastriate visual processing is
that large RFs throw away spatial information to produce spatially invariant
object representations by pooling spatially localized responses received
from earlier levels (e.g., Tanaka, 1996; Gochin, 1996, in the neurophysiology
literature; Riesenhuber & Poggio (1999) in the theoretical literature). Instead,
in a modeling study using intrinsic coding, large RF diameters produced
the most accurate reconstructions of space (Lehky & Sereno, 2011). The
better performance of large RFs in intrinsic coding holds true whether the
population is noise free (see Figure 5) or noisy (see Figures 6a and 6b). In
contrast, small RF diameters, as would occur in the earliest visual areas,
produced poor representations of space (see Figure 5c).

7 Extrinsic Versus Intrinsic Spatial Coding

Modeling shows that optimal receptive field (RF) characteristics for coding
visual space are strikingly different depending on whether extrinsic or
intrinsic population coding is used. Figure 6 directly compares extrinsic
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Figure 5: Example of intrinsic coding of visual space. Multidimensional scaling
was used to recover stimulus locations from a population of model neurons
without noise. The radius of receptive fields was defined as one space constant
σ of gaussian tuning curve, so the diameter was 2σ . Spacing between RF peaks
was 0.25σ , although previous work (Lehky & Sereno, 2011) shows that results
are independent of RF spacing for noise-free systems. (a) Physical stimulus lo-
cations. Forty locations are arranged in a radial grid. (b) Recovered positions
using large receptive fields, producing an accurate representation of space.
(c) Recovered positions using small receptive fields, producing a highly dis-
torted representation of space. Locations in the outer ring (lightest green) have
curved inward, so that the representation is not even topologically accurate.
In panels b and c, recovered positions were linearly rescaled by a Procrustes
transform to allow quantitative comparison with physical locations. Stress is
an error measure, with smaller values indicating better fit between recovered
locations and physical locations. (Adapted from Lehky & Sereno, 2011.)
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Figure 6: Comparison of population coding of visual space under intrinsic and
extrinsic methods, using noisy neural populations. Population characteristics
were identical in each case. The radius of receptive fields was defined as one
space constant σ of gaussian tuning curve, so the diameter was 2σ . Spacing
between RF peaks was 0.25σ . Uncorrelated gaussian noise was proportional to
neural responses, with a standard deviation of noise equal to 0.3 of response
amplitude for each neuron. (a, b) Intrinsic coding, using multidimensional scal-
ing on unlabeled neurons with large and small RFs. Details as in Figure 5.
Performance was better with large RFs. (c, d) Extrinsic coding, using weighted
peak averaging on labeled neurons with large and small RFs. Performance was
better with small RFs.

(weighted peak averaging) and intrinsic (MDS) methods using identical
noisy populations. As we have already seen, large RFs are best for intrinsic
coding. The opposite occurs using extrinsic coding. With extrinsic coding,
when each neuron is labeled with the spatial location of its RF, then small
RFs can produce more accurate representations of space than large RFs.

The improved accuracy of the extrinsic coding with small RFs shown
in Figure 6 depends on the assumption that relative RF overlap remains
constant, independent of RF size. Two consequences of keeping RF overlap
constant are the following. First, the spacing between RF peaks becomes
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smaller for small RFs and larger for large RFs, with performance degrading
as RF overlap decreases (RF spacing increases). Second, the number of
neurons in the population changes for different RF sizes to cover a given
region of visual space, with performance likely degrading as number of
neurons decreases. Thus, the improved performance for small receptive
fields using extrinsic coding given constant RF overlap may be due to
smaller spacing between neurons and greater number of neurons.

We believe that the assumption of constant RF overlap, which underlies
the demonstration that extrinsic coding performs better with small RFs, is
reasonable, particularly in light of studies of overlap in retinal ganglion
cells (Borghuis, Ratliff, Smith, Sterling, & Balasubramanian, 2008; DeVries
& Baylor, 1997), though see Zhang and Sejnowski, 1999, for an alterna-
tive approach using constant population size. By adapting the analysis
of Zhang and Sejnowski to the condition of constant relative RF overlap,
the improvement for small receptive fields in extrinsic coding can be seen
mathematically.2 However, correlated noise may place limits on the bene-
fits of very small RF diameters for extrinsic coding; see (Pouget, Deneve,
Ducom, & Latham, 1999).

A further difference between extrinsic and intrinsic population coding
involves the minimum population size required to encode stimuli. For ex-
trinsic coding, merely three such labeled overlapping RFs are in principle
able to define stimulus position in two dimensions by a process of tri-
lateration (or more generally a minimum of D + 1 receptive fields for a
D-dimensional parameter space), whereas intrinsic coding requires a larger
population to give reasonable results. For instance, for the one-dimensional
(D = 1) example of intrinsic coding in Figure 3, if the number of tuning
curves were reduced from seven to two, the decoding process could not
recover the correct topological order of the three stimuli despite being in a
noise-free system.

Thus, extrinsic and intrinsic approaches have quite different properties
regarding population encoding of space and come to distinct and divergent
understandings as to the role of large RF diameters in the reconstruction of
accurate representations of space. Neuropsychology indicates that various
higher-level cortical areas with large RFs are important in spatial represen-
tations (Jeannerod & Jacob, 2005), suggestive of intrinsic coding playing a
role.

2Fisher information J for a population, which describes encoding accuracy, is given
by J = ησD−2Kφ (F, τ, D), where η is the density of RFs covering the parameter space, σ

defines tuning width, D is the dimensionality of the receptive fields, and K is a func-
tion describing RF properties and stimulus duration. With a constant relative overlap
(e.g., tuning curve peaks separated by 2σ ), the density of receptive fields is inversely
proportional to RF diameter, η ∝ 1/σD. That makes Fisher information inversely related
to receptive field size: J ∝ 1/σ 2 (with dependence on D disappearing). In other words,
encoding accuracy increases for small receptive fields.



2248 S. Lehky, M. Sereno, and A. Sereno

8 Intrinsic Coding: Invariance

Representing relative values rather than absolute values using intrinsic cod-
ing has benefits for creating invariant representations. Indeed, maintaining
relative values unchanged in the face of various transforms captures the
essence of what an invariant representation is. As an example, if the rel-
ative positions of object features are encoded, those relationships remain
unchanged if the object is translated or scaled. In this case, a relational
representation can simplify the extraction of invariances compared to an
atomistic representation. Within an intrinsic coding framework, invariance
becomes a population property rather than a property realized in the re-
sponses of individual cells.

The contribution of population properties to spatially invariant repre-
sentations using intrinsic coding has been further discussed in Lehky and
Sereno (2011) and Sereno and Lehky (2011). Translational invariance was
found to be sensitive to receptive field dispersion (i.e., the visual field range
over which receptive field centers extend), a population characteristic that
varies across visual cortical areas. Also, it is not necessary for individual
neurons to be scale invariant in order for the population as a whole to be
scale invariant under intrinsic coding. If neurons in the population were
homogeneous with respect to their individual sensitivities to scale (have
the same scale sensitivity), a much weaker condition, then under intrinsic
coding, the population as a whole, would remain scale invariant. Moving
to the opposite extreme of a completely inhomogeneous population, sim-
ulations (Lehky & Sereno, 2011) indicate that if responses of individual
neurons are perturbed randomly in a population (equivalent to random
scale sensitivity), variations average out and relational encoding within an
intrinsic framework is minimally affected.

9 Intrinsic Coding and the Grounding Problem

Having access only to relative stimulus values works fine for some situ-
ations. For example, noting if a window is opened or closed can be done
with relational coding of positions. However, relational coding can lead to
apparent problems when physically interacting with the world, as in visual
control of motor actions (grasping the window to close it).

Unlabeled neural activities underlying intrinsic, relational representa-
tions have no real-world scales associated with them, such as degrees of
visual angle. Without attaching relational representations to an external
scale, the representations are not grounded to the world. We call this the
grounding problem (Harnad, 1990; Searle, 1980). The grounding problem
does not exist for extrinsic coding, as neural labels provide an external scale
for the activity of each neuron.

One way to solve the grounding problem is by allowing different rela-
tionally encoded variables (e.g., sensory and motor) to become consistent
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with each other and the world (i.e., grounded to the world) through inter-
actions with the world. This would involve experience-dependent learning
during sensory-guided motor actions (Krakauer, Pine, Ghilardi, & Ghez,
2000; Salinas & Abbott, 1995; Wallman & Fuchs, 1998) (see also Church-
land, 2012). For example, to make a saccade to a target, it is not necessary
to indicate target location using visual cells whose spatial tuning curves are
labeled in degrees of visual angle or to produce the saccade with motor cells
labeled in degrees. The population coding of both can each use intrinsic,
relational scales with arbitrary relationships to the physical world. As long
as the intrinsic representations of perception and action are consistent and
produce useful behavior in the world, the system is calibrated to the world
and these intrinsic population representations are grounded.

10 Discussion

Extrinsic approaches to population coding require that all neurons be ex-
ternally labeled. How such labeling is implemented (if ever) and where it
occurs in the neural circuitry is unknown. Extrinsic descriptions of pop-
ulation coding therefore remain incomplete from a biological perspective,
and perhaps even unphysiological. Unfortunately the labeling problem has
received little attention within neurophysiological theories of population
coding.

Intrinsic representations provide an alternative approach that sidesteps
the whole labeling problem. We have delineated critical and consequential
differences among the two classes of population models. In addition, we
have suggested situations where intrinsic coding may be superior (e.g.,
categorization at the population level, representational invariances), as well
as presented experimental successes for the intrinsic coding approach in
neurophysiology. We propose that much neural processing uses unlabeled
neurons, leading to intrinsic representations.

It is possible that extrinsic representations also exist in the brain, but
this would require finding and resolving the physiological basis of what-
ever neural labeling is presupposed by the particular extrinsic approach.
Although intrinsic and extrinsic methods are two fundamentally different
approaches to population coding, it is possible that a mixture of intrinsic
and extrinsic methods might be appropriate to attack a given problem.

Intrinsic population representations may also have potential for appli-
cations other than neurophysiology. Analogous procedures can be used to
interpret responses from populations of voxels in fMRI (Kriegeskorte et al.,
2008). This method may also be useful for neural modeling, for example,
to interpret hidden layer activity or the activity of the output of supervised
or unsupervised learning models, even in cases where the input or output
layers are trained using extrinsic labeling. Understanding representations
learned in the deeper layers of multilayer networks has been highlighted as
an important issue for future research in artificial neural networks (Hinton,
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Figure 7: The first population coding model, showing three color tuning curves.
These schematic curves were created by Helmholtz (1909/1962) based on an
idea by Young (1802), and were first published in 1860.

2007). Furthermore, intrinsic population representations can have practical
clinical applications. For example, current approaches to brain-machine in-
terfaces (BMIs) generally require labeling in order to interpret population
activities (Bokil, Pesaran, Andersen, & Mitra, 2006; Gao, Black, Bienenstock,
Shoham, & Donoghue, 2002; Shenoy et al., 2003; Taylor, Tillery, & Schwartz,
2002; Townsend, Subasi, & Scherberger, 2011; Velliste, Perel, Spaulding,
Whitford, & Schwartz, 2008). Intrinsic decoding, without need of label-
ing, promises powerful novel approaches to BMIs that should be insensitive
to instability or specific activity changes in individual neurons. In sum, in-
trinsic methods should prove consequential for issues of neural population
representation and decoding in the various fields of cognitive neuroscience.

Appendix A: Historical Roots of Population Coding

Population coding originated in the eighteenth century with the develop-
ment of trichromatic theories of color vision (Mollon, 2003; Weale, 1957).
Lomonosov (1756) and Palmer (1777) both proposed that responses of just
three classes of retinal receptors were sufficient to produce the percept of
all colors, an idea that became more widely disseminated following its pre-
sentation by Young (1802). Helmholtz (1909/1962), in his Treatise on Physio-
logical Optics, originally published in 1860, elaborated on Young’s proposal,
providing a schematic set of tuning curves for population coding of color
(see Figure 7).

Helmholtz also contributed the first model for decoding a population
in his line element theory. Created to explain color discrimination data,
Helmholtz’s theory treated the representation of each perceived color as
a point in a three-dimensional space, given by activations of the three
color channels. Under the theory, two colors became discriminable when
the Euclidean distance between their 3D representations reached a certain
threshold. Over the years, more elaborate versions of this model have been
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developed to account for a growing body of psychophysical data (Vos, 1979;
Wyszecki & Stiles, 1982). Helmholtz’s line element model decodes popula-
tions based on the response difference between two stimuli. It is therefore
an example of dealing with populations in an unlabeled intrinsic manner
to produce relational coding rather than in an extrinsic manner to produce
atomistic coding of individual stimuli.

Within visual psychophysics, starting in the late 1960s, there was an up-
swing of interest in population coding, expanding from the original color
models to a variety of other visual variables (Campbell & Robson, 1968;
Levinson & Sekuler, 1975; Sachs, Nachmias, & Robson, 1971; Wilson &
Bergen, 1979; Wilson & Gelb, 1984). Population coding was reviewed from
the perspective of psychophysical theory by Thomas (1985). In addition to
the line element model, he presented two other models adopting an ex-
trinsic approach, weighted averaging of tuning curve peaks and maximum
likelihood estimation (MLE) (see appendix B). The later two methods would
be independently developed within neurophysiology. Thomas emphasized
the labeled nature of peak averaging and MLE; this is not always made ex-
plicit within the neurophysiology literature. (See Rose, 1999, for a broader
perspective on labeling in psychophysical theories.)

Independent of work in psychophysics, population coding ideas were
also developed within computer science under the name of parallel dis-
tributed processing (PDP), involving connectionist modeling of networks
with neural-like elements (Feldman & Ballard, 1982; Hinton, 1981; Hinton,
McClelland, & Rumelhart, 1986). Early PDP models that used neural net-
work learning algorithms to create population codes involved studies of
motion processing to solve the aperture problem (Sereno, 1987, 1993; see
Figure 8), shape from shading (Lehky & Sejnowski, 1988, 1990), eye posi-
tion gain fields (Zipser & Andersen, 1988), and the vestibular-ocular reflex
(Anastasio & Robinson, 1989).

However, the PDP research program was not heavily concerned with
developing explicit decoding algorithms for populations with some ex-
ceptions (e.g., Sereno, 1987, 1993). More typically within PDP modeling,
population responses were fed into other populations without there ever
being a need to explicitly assign interpretations to patterns of activity within
intermediate layers of a network (Feldman & Ballard, 1982). Although the
input and output layers of supervised learning PDP models and the in-
put layers of unsupervised learning PDP models (e.g., Sereno & Sereno,
1991) are labeled and hence extrinsic, it is important to note that labeling
model neurons per se for training purposes does not exclude using intrinsic
methods to interpret the intermediate or output layer population activity
of trained networks.

Although not primarily oriented toward decoding methods, the PDP
work did raise the profile of population coding ideas within neurophysi-
ology during the 1980s. This neurophysiological work was very concerned
with interpreting population activities found in experimental data. A good
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Figure 8: Early connectionist model of visual motion (Sereno, 1987, 1993) that
solves the aperture problem (see Movshon, Adelson, Gizzi, & Newsome, 1985),
using extrinsic (labeled) population coding. (a) Input layer (V1) neurons sen-
sitive to local component of motion. Neurons have 2D tuning curves sensitive
to speed and direction, with the component motion population replicated at
different spatial locations. Output-layer (MT) neurons indicate a global pattern
of motion. (b) 1D cross-sections of 2D tuning curves. (c) Example pattern for
training network. The desired output is a rightward pattern motion (dashed
black arrow). Different input neurons are sensitive to motion component (gray
arrow) perpendicular to local feature within circular RF (aperture). (d) Activa-
tion of output units for pattern moving with direction 270 degrees and speed
32 deg/sec, after network training. Positions of black dots correspond to tuning
curve peaks; diameters indicate activation levels. (Adapted from illustrations
in Anderson, 1995; Sereno, 1993.)

demonstration of population coding in neurophysiology using extrinsic
methods involves place cells in the hippocampus (Wilson & McNaughton,
1993). Each place cell is active when the animal is located in a particular
region of the physical environment, and the joint activity of a population
of such cells gives a fairly precise determination of the animal’s location.
Other examples of population encoding include the generation of the direc-
tion and magnitude of saccadic eye movements by the superior colliculus
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(Lee, Rohrer, & Sparks, 1988), the control of the direction of arm movements
in motor cortex (Georgopoulos, Schwartz, & Kettner, 1986), and the encod-
ing of visual motion in cortical area MT (Groh, Born, & Newsome, 1997),
all using extrinsic approaches.

Appendix B: Extrinsic Methods for Population Coding

B.1 Weighted Tuning Curve Averaging. This approach, also known
as basis function averaging, estimates stimulus value by calculating the
weighted average of population tuning curves (Pouget et al., 2000; Pouget,
Dayan, & Zemel, 2003). The weights used are equal to the response (activa-
tion level) defined by the tuning curve for each neuron. For a population of
tuning curves fi(s) whose values for a particular stimulus s0 are given by
ri = fi

(
s0

)
, the weighted average curve is

f (s) =
∑n

i=1 ri fi(s)∑n
i=1 ri

. (B.1)

The estimated stimulus value ŝ is then given by the value of s where the
average curve f (s) has its peak.

An example of tuning curve averaging is given in Figure 9. Note that
to use this technique, all neurons in the population must be labeled with
parametric descriptions of their tuning curves.

B.2 Weighted Peak Averaging. Peak averaging is similar to tuning
curve averaging, but instead of averaging entire tuning curves, only peak
values are used. Again, averaging is weighted by the response ri corre-
sponding to each tuning curve. Thus, if the stimulus values corresponding
to tuning curve peaks are denoted by pi, the weighted average of the peaks
is denoted by

ŝ =
∑n

i=1 ri pi∑n
i=1 ri

. (B.2)

This weighted average of peaks directly gives the estimated value of the
stimulus, ŝ. Figure 10a shows an example of interpreting population activity
based on peak averaging. This technique assumes the values of tuning
curve peaks are labeled. Georgopoulos (1995; Georgopoulos et al., 1986)
was seminal in introducing peak averaging models to neurophysiology,
and a number of theoretical papers and reviews cover this approach in
detail (Salinas & Abbott, 1994; Sanger, 2003; Seung & Sompolinsky, 1993;
Vogels, 1990; Zhang, Ginzburg, McNaughton, & Sejnowski, 1998).



2254 S. Lehky, M. Sereno, and A. Sereno

-10 -5 0 5 10
0

0.5

1

stimulus value

re
sp

on
se

d.
tuning curve averaging

3 4

5

6

7

-10 -5 0 5 10
0

0.5

1

stimulus value

re
sp

on
se

c.
tuning curve averaging

3

4

5

6
7

-10 -5 0 5 100

0.5

1

stimulus value

re
sp

on
se

b.
tuning curve averaging

1

2
3

4 5

1 2 3 4 5 6 70
0.5

1

re
sp

neuron

1 2 3 4 5 6 70
0.5

1

re
sp

1 2 3 4 5 6 70
0.5

1
re

sp

a.

Figure 9: Weighted average of tuning curves. Example based on tuning curves
and stimuli in Figure 1. (a) Responses of seven neurons to the three stimuli.
(b–d) Interpreting population activity. Dashed line curves are stimulus tuning
curves for individual neurons. Curve heights are proportional to the activation
of each neuron as indicated in panel a. Solid curve is a weighted average of
tuning curves, with height normalized to one for display purposes. The peak of
the weighted average curve closely matches stimulus value (colored line).

B.3 Bayesian Estimation. The Bayesian approach codes variables in
a probabilistic manner (Abbott, 1994; Brown, Frank, Tang, Quirk, & Wil-
son, 1998; Földiák, 1993; Oram et al., 1998; Pouget et al., 2000, 2003; Quian
Quiroga & Panzeri, 2009; Sanger, 2003; Seung & Sompolinsky, 1993; Zhang
et al., 1998), taking into account noise in neural tuning curves. Bayes’ rule
defines the following relationship among stimulus and response probabil-
ities for the ith neuron in the population:

p(s|ri) ∝ p(ri|s)p(s). (B.3)

The output of Bayes’ rule is a probability density function p(s|ri), the pos-
terior probability. This curve indicates the probability that stimulus s has
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Figure 10: (a) Weighted average of tuning curve peaks. Black dots on the x-axis
indicate peak values of the seven tuning curves. The stimulus response of each
neuron (weighing term) is indicated by the height of the dashed line above each
black dot. The weighted average of tuning curve peaks is shown by the white
circle on the x-axis, indicating interpretation attached to population activity.
The blue line marks physical stimulus value (the height of the blue line has
no significance). (b) Bayesian estimation. Dashed lines are logs of normalized
likelihood curves for individual neurons, and the solid curve is the overall
population log(p(s|r)) calculated by summing individual curves plus log prior
probability (see equation B.5). The interpretation assigned to the population
activity is stimulus value s at solid curve peak. The blue line marks actual
stimulus value (the height of the blue line has no significance).

occurred as a function of neural response ri. Applying Bayes’ rule involves
two probability distributions. The first is the likelihood function p

(
ri|s

)
,

which is the probability of ri given s. Often when Bayesian estimation is ap-
plied, the likelihood function for each neuron is not measured but is derived
from the assumption of Poisson noise statistics. The second distribution is
p(s), the prior probability. That denotes the probability of s occurring in
the environment. Equation B.3 omits a normalization factor, which can be
ignored because it affects only the height of p(s|ri), not its peak location or
shape.

Once we have a probability function for each neuron, those functions
are multiplied together for all neurons (assuming independent noise) to
provide the joint probability across the population that s has occurred:

p(s|r) ∝ p(s)
n∏

i=1

p(ri|s). (B.4)

The interpretation of population activity is then given by the stimulus value
s that maximizes p(s|r) (i.e., the peak of that curve). Rather than doing
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this multiplication, it is convenient to take logarithms, thereby converting
multiplication to addition:

log[p(s|r)] ∝ log[p(s)] +
n∑

i=1

log[p(ri|s)]. (B.5)

Taking logarithms changes the heights of all curves but not their peak
locations. Therefore, it does not affect the stimulus value assigned to the
population activity.

Figure 10b shows an example of Bayesian estimation using log-
transformed probability curves. The dashed lines are log[p(ri|s)] curves for
individual neurons, and the solid curve is the overall population log[p(s|r)]
calculated by summing the individual curves plus log[p(s)]. The interpre-
tation assigned to the population activity is the value of stimulus s at the
peak of the summed curve.

To apply Bayesian estimation, each neuron must be labeled with de-
scriptions of its noise properties, and the prior probabilities of stimuli in
the environment must be known as well. Even if statistical estimation of
stimulus values is implemented as a neural network that filters out noise
(Deneve, Latham, & Pouget, 1999), that network converts a statistical esti-
mation problem into a vector averaging or basis function problem in which
neurons must still be labeled.

B.4 Maximum Likelihood Estimation. Maximum likelihood estima-
tion is similar to Bayesian estimation, except that the prior probability p(s)
in equation B.3 is assumed to be constant for all stimuli s (all possible stim-
uli in the environment are uniformly distributed). Since p(s) is constant,
that leaves the likelihood function p(ri|s) as the only factor in equation
B.3 that needs to be considered. Population activity is therefore interpreted
as representing the stimulus value s that maximizes the likelihood func-
tion. Obviously every neuron in the population must be labeled with its
likelihood function in order to use this method.

B.5 Probabilistic Population Coding. This approach attempts to rep-
resent not just the value of a variable, as was done in the methods above,
but its uncertainty as well. While classic Bayesian and MLE methods treat
randomness in neural responses as a nuisance variable, here it plays a fun-
damental role in representing stimulus uncertainty. Anderson (1994) and
Földiák (1993) were early proponents of the idea that neurons may be encod-
ing the entire probability distribution of a variable and not just its expected
value. This idea has been incorporated into a variety of population cod-
ing models, including those of Ma, Beck, Latham, and Pouget (2006) and
Zemel, Dayan, and Pouget (1998). Probabilistic population coding models
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fall in the category of extrinsic representations because they require labeled
neurons.

Appendix C: Philosophical Foundations of the Extrinsic/Intrinsic
Distinction

The distinction between intrinsic and extrinsic representations in popu-
lation coding finds its antecedents in different philosophical views on the
nature of representation. British empiricist philosophers advocated psycho-
logical atomism, in which complex percepts were built up through associa-
tions of freestanding, independent, simple sensations. For example, Hume
(1739) described the percept of a table as “impressions of colored points,
disposed in a certain manner.” This early commitment to atomism extended
its influence into the logical atomism of Russell and Wittgenstein, which
were important sources for the development of Anglo-American analytical
philosophy of the twentieth century. Extrinsic population coding, with its
in-built adherence to atomism, relates to this viewpoint on representations.

Following a different line of thought, development of Gestalt ideas in
Germany in the late nineteenth and early twentieth centuries provided a
psychological theory in which perception was irreducibly relational, not
atomistic (Köhler, 1947/1992). The Gestalt perspective strongly influenced
phenomenological philosophers on the European continent, most notably
Merleau-Ponty. Merleau-Ponty (1964) took the opposite viewpoint from
Hume’s atomism, saying, “We observe at once that it is impossible, as has
often been said, to decompose a perception, to make it into a collection of
sensations, because in it the whole is prior to the parts.” Intrinsic repre-
sentation within population coding connects with this strain of thought, as
sensations are coded relationally.

The distinction between atomistic and relational representations also
finds antecedents in the nineteenth century with the contrasting viewpoints
of the structuralist and functionalist schools of psychology (Boring, 1950).

Appendix D: Dimensionality Reduction

A neural population encodes stimuli in a high-dimensional space, where the
dimensionality of the representation is equal to population size. For a pop-
ulation of 1000 neurons, responses to different stimuli can be represented
as a set of points in a 1000-dimensional space. Typically the points would
not be expected to form a uniform cloud within the high-dimensional space
but show internal structure. That structure will depend on the relationships
between stimuli—for example, how different stimuli are similar in some
respects but dissimilar in others.

Figure 11 gives an example of internal structure within a set of points
in a very small population (n = 3) for purpose of illustration. Each point
represents a different stimulus encoded by a three-neuron population. In
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Figure 11: Example of dimensionality reduction. Intrinsic methods for inter-
preting population activity typically include a dimensionality reduction proce-
dure. (a) One-dimensional manifold embedded in a three-dimensional encoding
space (neural population of three neurons). Each dot represents a population
response to a different stimulus. (b) One-dimensional representation space af-
ter dimensionality reduction. Colors have no significance other than to assist in
comparing patterns across panels.

Figure 11a, although all the points are in 3D space, they are largely restricted
to lying along a smooth 1D subspace, or manifold. With a dimensionality-
reduction procedure, representation of the points can be transformed from
3D to 1D (see Figure 11b), while conserving essential relationships among
the points. Possible benefits of low-dimensional manifolds embedded in
high-dimensional neural representations for perceptual processing are dis-
cussed by Lehky and Sereno (2011), Sereno and Lehky (2011), and Seung
and Lee (2000).

In this simple 3D example, the low-dimensional structure in the stim-
ulus representations is obvious even without performing dimensionality
reduction. However, in a more realistic situation where the stimuli were
embedded in a high-dimensional space, the existence of low-dimensional
manifolds would not be apparent without performing a dimensionality-
reduction procedure.

In addition to the multidimensional scaling discussed in the main text,
additional dimensionality-reduction algorithms that have been used to cre-
ate intrinsic representations within neuroscience include principal compo-
nent analysis (Lehky & Sereno, 2011) and multiple discriminant analysis
(Lin, Osan, & Tsien, 2006). There are many other dimensionality-reduction
algorithms, each with different characteristics (Lee & Verleysen, 2007;
van der Maaten, Postma, & van den Herik, 2009). Applications of these
new techniques to intrinsic coding in neural populations remain to be
explored.
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Köhler, W. (1992). Gestalt psychology: An introduction to new concepts in modern psy-
chology. New York: Liveright. (Original work published 1947.)

Kourtzi, Z., & Connor, C. E. (2011). Neural representations for object perception:
Structure, category, and adaptive coding. Annual Review of Neuroscience, 34, 45–
67.

Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F., & Ghez, C. (2000). Learning of visuo-
motor transformations for vectorial planning of reaching trajectories. Journal of
Neuroscience, 20, 8916–8924.

Kriegeskorte, N. (2009). Relating population-code representations between man,
monkey, and computational models. Frontiers in Neuroscience, 3, 363–373.

Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., et al. (2008).
Matching categorical object representations in inferior temporal cortex of man
and monkey. Neuron, 60, 1126–1141.

Lee, C., Rohrer, W. H., & Sparks, D. L. (1988). Population coding of saccadic eye
movements by neurons in the superior colliculus. Nature, 332, 357–360.

Lee, J. A., & Verleysen, M. (2007). Nonlinear dimensionality reduction. New York:
Springer.

Lehky, S. R., & Sejnowski, T. J. (1988). Network model of shape-from-shading: Neu-
ral function arises from both receptive and projective fields. Nature, 333, 452–
454.

Lehky, S. R., & Sejnowski, T. J. (1990). Neural network model of visual cortex for
determining surface curvature from images of shaded surfaces. Proceedings of the
Royal Society of London. Series B: Biological Sciences, 240, 251–278.

Lehky, S. R., & Sereno, A. B. (2007). Comparison of shape encoding in primate dorsal
and ventral visual pathways. Journal of Neurophysiology, 97, 307–319.

Lehky, S. R., & Sereno, A. B. (2011). Population coding of visual space: Modeling.
Frontiers in Computational Neuroscience, 4, 155. doi:110.3389/fncom.2010.00155

Levinson, E., & Sekuler, R. (1975). The independence of channels in human vision
selective for direction of movement. Journal of Physiology, 250, 347–366.

Lin, L., Osan, R., & Tsien, J. Z. (2006). Organizing principles of real-time memory
encoding: Neural clique assemblies and universal neural codes. Trends in Neuro-
sciences, 29, 48–57.

Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior
temporal cortex of monkeys. Current Biology, 5, 552–563.

Logothetis, N. K., & Sheinberg, D. L. (1996). Visual object recognition. Annual Review
of Neuroscience, 19, 577–621.

Lomonosov, M. H. (1756). Oratio de origine lucis novam theoriam colorum. Petropoli:
Typis Academie Scientiarum.

Ma, W. J., Beck, J. M., Latham, P. E., & Pouget, A. (2006). Bayesian inference with
probabilistic population codes. Nature Neuroscience, 9, 1432–1438.

Merleau-Ponty, M. (1964). The primacy of perception (J. M. Edie, Trans.). Evanston, IL:
Northwestern University Press.



2262 S. Lehky, M. Sereno, and A. Sereno

Mollon, J. (2003). The origins of modern color science. In S. Shevell (Ed. ), Color science
(pp. 1–39). Washington, DC: Optical Society of America.

Movshon, J. A., Adelson, E. H., Gizzi, M. S., & Newsome, W. T. (1985). The anal-
ysis of moving visual patterns. In C. Chagas, R. Gattass & C. G. Gross (Eds.),
Pattern recognition mechanisms (pp. 117–151). Vatican City: Pontificia Academiae
Scientiarum.

Murata, A., Gallese, V., Luppino, G., Kaseda, M., & Sakata, H. (2000). Selectivity
for the shape, size, and orientation of objects for grasping in neurons of monkey
parietal area AIP. Journal of Neurophysiology, 83, 2580–2601.

Op de Beeck, H., Wagemans, J., & Vogels, R. (2001). Inferotemporal neurons represent
low-dimensional configurations of parameterized shapes. Nature Neuroscience, 4,
1244–1252.

Oram, M. W., Földiák, P., Perrett, D. I., & Sengpiel, F. (1998). The “Ideal Homunculus”:
Decoding neural population signals. Trends in Neurosciences, 21, 259–265.

Palmer, G. (1777). Theory of colours and vision. London: Leacroft.
Pouget, A., Dayan, P., & Zemel, R. (2000). Information processing with population

codes. Nature Reviews Neuroscience, 1, 125–132.
Pouget, A., Dayan, P., & Zemel, R. S. (2003). Inference and computation with popu-

lation codes. Annual Review of Neuroscience, 26, 381–410.
Pouget, A., Deneve, S., Ducom, J.-C., & Latham, P. E. (1999). Narrow versus wide

tuning curves: What’s best for a population code? Neural Computation, 11, 85–
90.

Quian Quiroga, R., & Panzeri, S. (2009). Extracting information from neuronal pop-
ulations: Information theory and decoding approaches. Nature Reviews Neuro-
science, 10, 173–185.

Richmond, B. J., Optican, L. M., Podell, M., & Spitzer, H. (1987). Temporal encoding
of two-dimensional patterns by single units in primate inferior temporal cortex.
I. Response characteristics. Journal of Neurophysiology, 57, 132–146.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nature Neuroscience, 2, 1019–1025.

Rolls, E. T., & Tovée, M. J. (1995). Sparseness of the neuronal representation of stimuli
in the primate temporal visual cortex. Journal of Neurophysiology, 73, 713–726.

Rose, D. (1999). The historical roots of the theories of local signs and labelled lines.
Perception, 28, 675–685.

Sachs, M. B., Nachmias, J., & Robson, J. G. (1971). Spatial-frequency channels in
human vision. Journal of the Optical Society of America, 61, 1176–1186.

Salinas, E., & Abbott, L. F. (1994). Vector reconstruction from firing rates. Journal of
Computational Neuroscience, 1, 89–107.

Salinas, E., & Abbott, L. F. (1995). Transfer of coded information from sensory to
motor networks. Journal of Neuroscience, 15, 6461–6474.

Sanger, T. D. (2003). Neural population codes. Current Opinion in Neurobiology, 13,
238–249.

Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences, 3,
417–457.

Sereno, A. B., & Lehky, S. R. (2011). Population coding of visual space: Comparison of
spatial representations in dorsal and ventral pathways. Frontiers in Computational
Neuroscience, 4, 159. doi:110.3389/fncom.2010.00159



Population Coding and the Labeling Problem 2263

Sereno, M. E. (1987). Implementing stages of motion analysis in neural networks. Paper
presented at the Proceedings of the Ninth Annual Conference of the Cognitive
Science Society.

Sereno, M. E. (1993). Neural computation of pattern motion: Modeling stages of motion
analysis in the primate visual cortex. Cambridge, MA: MIT Press.

Sereno, M. I., & Sereno, M. E. (1991). Learning to see rotation and dilation with a
Hebb rule. In R. P. Lippmann, J. Moody & D. S. Touretzky (Eds.), Advances in
neural information processing systems, 3 (pp. 320–326). San Mateo, CA: Morgan
Kaufmann.

Seung, H. S., & Lee, D. D. (2000). Cognition. The manifold ways of perception.
Science, 290, 2268–2269.

Seung, H. S., & Sompolinsky, H. (1993). Simple models for reading neuronal popu-
lation codes. Proceedings of the National Academy of Sciences of the United States of
America, 90, 10749–10753.

Shenoy, K. V., Meeker, D., Cao, S., Kureshi, S. A., Pesaran, B., Buneo, C. A., et al.
(2003). Neural prosthetic control signals from plan activity. Neuroreport, 14, 591–
596.

Shepard, R. N. (1980). Multidimensional scaling, tree-fitting, and clustering. Science,
210, 390–398.

Shepard, R. N., & Chipman, S. (1970). Second-order isomorphism of internal repre-
sentations: Shapes of states. Cognitive Psychology, 1, 1–17.

Shepard, R. N., & Podgorny, P. (1978). Cognitive processes that resemble perceptual
processes. In W. K. Estes (Ed.), Handbook of learning and cognitive processes (Vol. 5,
pp. 189–237). Hillsdale, NJ: Erlbaum.

Tanaka, K. (1996). Inferotemporal cortex and object vision. Annual Review of Neuro-
science, 19, 109–139.

Tanaka, K., Saito, H., Fukada, Y., & Moriya, M. (1991). Coding visual images of objects
in the inferotemporal cortex of the macaque monkey. Journal of Neurophysiology,
66, 170–189.

Taylor, D. M., Tillery, S.I.H., & Schwartz, A. B. (2002). Direct cortical control of 3D
neuroprosthetic devices. Science, 296, 1829–1832.

Thomas, J. P. (1985). Detection and identification: how are they related? Journal of the
Optical Society of America A. Optics and Image Science, 2, 1457–1467.

Townsend, B. R., Subasi, E., & Scherberger, H. (2011). Grasp movement de-
coding from premotor and parietal cortex. Journal of Neuroscience, 31, 14386–
14398.

van der Maaten, L., Postma, E., & van den Herik, J. (2009). Dimensionality reduction: A
comparative review (Tech. Rep. TiCC-TR 2009-005). Tilburg, Netherlands: Tilburg
University Centre for Creative Computing.

Velliste, M., Perel, S., Spaulding, M. C., Whitford, A. S., & Schwartz, A. B. (2008).
Cortical control of a prosthetic arm for self-feeding. Nature, 453, 1098–1101.

Vogels, R. (1990). Population coding of stimulus orientation by striate cortical cells.
Biological Cybernetics, 64, 25–31.

Vos, J. J. (1979). Line elements and physiological models of color vision. Color Research
and Application, 4, 208–216.

Wallman, J., & Fuchs, A. F. (1998). Saccadic gain modification: Visual error drives
motor adaptation. Journal of Neurophysiology, 80, 2405–2416.



2264 S. Lehky, M. Sereno, and A. Sereno

Weale, R. (1957). Trichromatic ideas in the seventeenth and eighteenth centuries.
Nature, 179, 648–651.

Wilson, H. R., & Bergen, J. R. (1979). A four mechanism model for threshold spatial
vision. Vision Research, 19, 19–32.

Wilson, H. R., & Gelb, D. J. (1984). Modified line-element theory for spatial-frequency
and width discrimination. Journal of the Optical Society of America A. Optics and
Image Science, 1, 124–131.

Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble
code for space. Science, 261, 1055–1058.

Wyszecki, G., & Stiles, W. S. (1982). Color science: Concepts and methods, quantitative
data and formulae (2nd ed.). New York: Wiley.

Yamane, Y., Carlson, E. T., Bowman, K. C., Wang, Z., & Connor, C. E. (2008). A neural
code for three-dimensional object shape in macaque inferotemporal cortex. Nat.
Neurosci., 11, 1352–1360.

Young, M. P., & Yamane, S. (1992). Sparse population coding of faces in the infer-
otemporal cortex. Science, 256, 1327–1331.

Young, T. (1802). The Bakerian lecture: On the theory of light and colours. Philosoph-
ical Transactions of the Royal Society of London, 92, 12–48.

Zemel, R. S., Dayan, P., & Pouget, A. (1998). Probabilistic interpretation of population
codes. Neural Computation, 10, 403–430.

Zhang, K., Ginzburg, I., McNaughton, B. L., & Sejnowski, T. J. (1998). Interpreting
neuronal population activity by reconstruction: Unified framework with appli-
cation to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.

Zhang, K., & Sejnowski, T. J. (1999). Neural tuning: To broaden or to sharpen. Neural
Computation, 11, 75–84.

Zipser, D., & Andersen, R. A. (1988). A back-propagation programmed network that
simulates response properties of a subset of posterior parietal neurons. Nature,
331, 679–684.

Received September 12, 2012; accepted March 12, 2013.


