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An important problem for both biological and machine vision is the construction of scene representations
from 2-D image data that are useful for recognition. One problem is that there can be more than one world out
there giving rise to the image data at hand. Additional constraints regarding the nature of the environment
have to be used to narrow the range of solutions. Although effort has gone into understanding these
constraints, relatively little has been done to understand how neurallike learning networks may be used to
solve scene-from-image problems. A paradigm is proposed in which stochastic models of scene properties are
used to provide samples of image and scene representations. Distributed associative networks are taught, by
example, the statistical constraints relating the image to the representation of the scene. This technique is
applied to problems in optic flow, shape-from-shading, and stereo.

1. Introduction

Recent research has demonstrated the potential of
massively parallel architectures for cognitive sci-
ence.1-6 The need for parallel architectures is espe-
cially apparent in perception, and in particular vision.7

To begin to understand the role of neurons and their
connectivity in vision, it is necessary to determine
what they compute and how they do it. One major
problem in vision is the estimation of scene properties
from image data.

The image is a description of the luminance as a
function of space and time. The scene is a description
of objects, their space-time relations, and the illumi-
nation and viewing conditions that caused the image.
One step in solving the problem of visual recognition in
natural conditions has been to construct explicit scene
representations from image data. This is because rec-
ognition can then be based on representations which
are less sensitive to lighting conditions, viewpoint of
the observer, and position and orientation of the ob-
ject.8 One intermediate goal has been to construct a
unified representation of object surface information
such as orientation, depth, and reflectance, inferred
from various sources of information such as stereo,
motion, and color. These representations, or "intrin-
sic images,"9 differ from more abstract representations
by being spatially indexed and in a viewer-centered
coordinate frame. However, the computation of scene
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representations has proved unexpectedly difficult.
One reason for the difficulty is that these problems are
often underconstrained or ill-posed. That is, there are
many possible states of the world which could give rise
to a given image.10

I. Theoretical Background

A. General

The inference problem of finding the scene which
caused an image can be formalized statistically as fol-
lows. Let a family of scene parameters be represented
by a vector s. The forward problem of calculating an
image i from s is usually straightforward:

i = A(s), (1)

where A may, in general, be a nonlinear mapping.
However, the inverse problem, of computing s from i
with a knowledge of A, is ill-posed in the sense that
there often is not a unique s which satisfies the equa-
tion.

One approach to solving the inverse problem is max-
imum a posteriori (MAP) estimation.1 -13 Suppose
the probability of s conditional on i is known. The
computational goal is then to compute the most proba-
ble scene vector, conditional on the image vector. It is
often difficult to write directly an expression for the
conditional probability. However, Bayes rule enables
us to break the probability into two parts:

p(sli) = P(ils)p(s)
pMi

(2)

where p(ils) and p(s) characterize the image formation
and scene models, respectively; p(i) is constant. If we
assume

i = As + noise, (3)

1 December 1987 / Vol. 26, No. 23 / APPLIED OPTICS 4999



where the noise term is multivariate Gaussian with a
constant diagonal covariance matrix, then

p(ils) = k exl{- 2 (i-As) T(i-AS)] (4)

where k is a constant. Further, assume that p(s) is
multivariate Gaussian:

p(s) = exp(- 2sTBs) (5)

where s is adjusted to have zero mean. With these
assumptions, and by taking the logarithm of the ex-
pression for p(ils), maximizing p(ils) is equivalent to
minimizing

(As - i)T(As - i) + XsTBs, (6)

where X is a Lagrange multiplier equal to the ratio of
the noise-to-scene variance.

Given a vector representation and the above Gauss-
ian assumptions, the MAP formulation is equivalent to
the regularization theory formulation of Poggio et al.10

In the regularization approach, one typically incorpo-
rates a suitable constraint operator, P, which reflects
our prior assumptions about what s is usually like (e.g.,
natural surfaces are smooth almost everywhere). The
solution is found by minimizing

IlAs - il 2
+ \AlPSJJ2 (7)

where the norm may be the squared vector length.
Thus, the MAP formulation (6) gives the cost function
(7) when B = P7 P. The form of P is usually arrived at
by a combination of heuristics, mathematical conve-
nience, and experiment.

Expressing regularization theory in terms of MAP
estimation has the following advantages. First, it pro-
vides a more general framework within which to com-
pare diverse biological and machine implementations
that attempt to solve the same problem. Second, the
constraint term can, in principle, be based on verifiable
scene statistics rather than heuristics. Finding a good
statistical-model of natural scene parameters is a diffi-
cult problem in itself. Here we may benefit from the
rapidly expanding field of computer synthesis of natu-
ralistic scenes. Third, the probabilistic formulation
defines the input/output pairs to use associative con-
nectionist algorithms that learn to estimate scene pa-
rameters from images. This becomes particularly in-
teresting when it is difficult to compute the posterior
distribution, and we have a complete description of the
prior distribution and the image formation model.
Here, of course, we may not be able to directly address
the optimality of the learning algorithm, but we can
compare its asymptotic performance for scene estima-
tion with human observers. Thus, connectionist
learning algorithms can be used as tools to find map-
pings from image data to scene parameters.

When the image formation process is linear and the
prior distribution Gaussian, the cost function is con-
vex, and thus standard techniques, such as gradient
descent, can be used to find the global minimum. It
seems reasonable to first study linear algorithms for

those scene-from-image problems where the computa-
tional power is adequate. Quasilinear systems are
not uncommon in early visual coding.1416 In the stud-
ies below, we show applications of linear estimators to
problems in optic flow measurement, shape-from-
shading, and stereo, away from discontinuities. The
MAP formulation can be extended to discontinuities
and thus, nonconvex cost functions.13 Recent work
has demonstrated the potential of analog neural net-
works to solve these. 17

B. Learning Scene Representations from Images

Suppose we have examples of input/output pairs
(i,s), but A and B are unknown. Then the inverse
operator can be estimated using associative learning.
This approach can be contrasted with the usual proce-
dure of trying to guess a suitable constraint operator B.
If S is the matrix mapping i to s, then S can be estimat-
ed by the well-known Widrow-Hoff error correction
procedure interatively as follows:

Sh+1= Sh + Ph(S - Ski)i', (8)

where Sk and ik are the kth examples of the surface and
image vector representations, respectively; Pk is a sca-
lar often chosen proportional to 1/k to obtain conver-
gence. 18 -2 0

In the three sections which follow, we apply linear
associative learning to three different problems in ear-
ly vision. In addition, each is approached from a
slightly different view. The motion measurement
problem is a good example of a linear generalized in-
verse problem.21 However, simple rigid motion in the
plane is typically over constrained rather than under-
constrained. There are data on the neurons which
may be subserving measurement of rigid motions in
the plane. The problem is that a single neuron may
simultaneously carry information about direction and
speed. Widrow-Hoff learning is used to find a map
between component and pattern-selective model neu-
rons.

Both shape from shading and stereo are examples of
nonlinear problems in early vision. Further, shape
from shading, in particular, is severely undercon-
strained. However, by narrowing the domain of the
problem, we show both successes and limitations of the
linear techniques.

Ill. Motion Measurement

The aperture problem involves assigning a unique
velocity to an object given by local motion measure-
ments. Local motion measurements along contours of
the object provide ambiguous information about the
direction of motion because only the component of
motion perpendicular to the orientation of the moving
contour can be measured (Fig. 1).

We implemented this constraint in a model22 struc-
tured in accord with the following neurophysiological
findings.23 Some neurons in striate cortex (area VI)
are selective for orientation and speed at a given spa-
tial frequency. However, they only respond to the
perpendicular component of motion. Area MT, an
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extrastriate area involved in motion analysis, receives
a direct topographic projection from V1, is selective for
the direction and speed of motion of a stimulus, and
possesses larger receptive fields, indicating spatial
summation of its inputs. Moreover, -25% of MT neu-
rons exhibit pattern direction selectivity. That is, in
contrast to V1 cells, they are selective for the motion of
the pattern as a whole, rather than to just a component
of the motion.

A network was simulated which mapped activities of
component selective V1 neurons to pattern selective
MT output units. The activities of the neurons were a
result of an instantaneous change in the velocity of a
pattern. These model neurons were tuned to particu-
lar speeds and directions. Model V1 units signaled
only the component of motion perpendicular to their
preferred orientation; model MT units responded to 2-
D motion.

Let di and Skl represent direction and speed of a
contour (perpendicular to the orientation) at location
(Ul). Then the response of a model V1 neuron with
preferred direction i and speed j is

rij = i(dkl) + Wj(Skl)- 9

If we assume identical tuning functions w(-) which are
just shifted versions of each other, this expression can
be simplified to

rij = w(dkl -i) + w(skl i)- (10)

We seek a linear mapping W,

W: rijl - Rpq,

where Rpq is the response of a model MT neuron selec-
tive for pattern motion in preferred direction p and

with speed q. Here, rij and Rpq play the roles of image
(i) and scene (s) representations, respectively. Be-
cause direction and speed information are multiplexed
at the input and output, it is not straightforward to
determine the appropriate synaptic weights connect-
ing the model VI neurons to MT. The linear associa-
tor with Widrow-Hoff error correction was employed
as a tool to find the weightings represented by matrix
W appropriate for a training set consisting of pairs of
vectors (r, R), where the elements of r and R are rij and
Rpq.

One simulation will be described to illustrate the
performance of the system. For this simulation, direc-
tion-selective units were placed at 15° intervals with
bandwidths of 900. The response tapered off linearly
to 0 at 450 on both sides of the peak direction. There
were seventeen peak directions (spanning 255°) and
eight peak speeds (spanning 30° of visual angle/s).
Since each unit is sensitive to both speed and direction,
a total of 136 units was available at each location.
There were two complete sets (i.e., two locations) of V1
units and one set of MT units. The system was trained
on fifty patterns and then tested on these patterns and
on fifty new ones (Fig. 2). After fifteen iterations
through the training set (with a constant ph of 0.95), the
system reached stable performance and was tested.
The mean cosine between estimated and actual pat-
tern velocity was 0.98 and 0.97 for old and novel pat-
tern motion vectors, respectively. Because of the re-
ceptive field overlap, the motion information is
actually distributed over the population of model MT
neurons. A weighted average of MT neurons was tak-
en as a measure of estimated pattern direction and
speed:

2;RpqP
pattern direction = PqP,

ZRpq

2;Rpqq
pattern speed =

ZRpq

(11)

(12)

The mean difference between the weighted average for
the real direction and the reconstructed direction for
the old patterns was 3.00, while the mean difference for
the new patterns was 4.2°. The mean difference be-
tween weighted averages for real and reconstructed
speeds for old patterns was 1.1/s compared to 1.60/s
for new patterns.

The model works well for rigid planar motion. Fu-

0 0
0o

0
0

Fig. 2. Examples of patterns used to train the linear pattern veloci-
ty estimator. Each open circle represents a set of 136 V1 units tuned
to various speeds and directions at a given location. Patterns were
composed of one to three line segments. The number of line seg-
ments, their orientation, and the velocity of the entire pattern were

uniformly distributed and independent.
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ture work will determine if the model can be extended
to deal with general 3-D motion. Extensions to multi-
ple moving objects will necessarily involve processing
of discontinuities in the flow field.

IV. Shape from Shading

The shading pattern on a surface provides informa-
tion about the shape of the surface. Recent studies of
human perception of shape from shading focus on
simple convex objects with occluding boundaries, the
most common being ellipsoids and spheres.24 25 With-
out the information provided by the boundaries, these
images appear very flat. On the other hand, shaded
images of more complex surfaces, with several peaks
and valleys, are perceived as having 3-D shape. The
goal of this research is to investigate the means by
which the shape of complex surfaces may be derived
solely from shading information, in the absence of
occluding boundaries.

Shading is defined as the pattern of luminance re-
flected from a surface to the viewer. Ignoring the
effects of shadows, the luminance at each point of a
surface is a function of the surface's albedo, its local
geometry (or shape), the position of the viewer relative
to the surface, and the lighting conditions. This may
be summarized as

L(x,y) = fR(x,y), N(x,y), V(x,y), E(xy)], (13)

where L is the luminance, R is the albedo, N is a
representation of the shape of the surface, V is the
viewer angle and E is the vector pointing towards the
light source with magnitude equal to the light energy
flux incident on the surface. The human visual sys-
tem is thus presented with the formidable task of
tearing apart the relative effects of several different
variables on the shading pattern.

A first step in simplifying the luminance function is
to split it into two independent components; the albe-
do function R, and the effective illuminance I:

L(x,y) = R(x,y)I[N(xy), V(x,y), E(x,y)]; (14)

I is then the shading pattern over the same surface with
constant albedo. We will ignore the problem of deter-
mining R, which, in principle, may be derived indepen-
dently of the surface shape. Previous modeling work
on shape from shading has relied on several assump-
tions which further simplify Eq. (13). These are that
the surface is Lambertian (i.e., luminance at a point is
constant for all viewing directions), and the light
source is a point source at infinity with known direc-
tion. The first of these remains to be adequately
tested. The second may be defended by noting that
many complex lighting conditions may be modeled
fairly well by a point light source and that the direction
of the source may be accurately determined from im-
age statistics. 2 6 Equation (13) now reduces to

L(x,y) = kN(x,y) E, (15)

a constant times the dot product between the surface
normal vector and the normal vector E in the direction
of the light source. The only unknown left to solve for
is the set of surface normals, [N(x,y)].

A. Surface Model

One must somehow constrain the space of possible
surfaces. Previous research has focused on the use of
constraints on the local structure of surfaces, such as a
smoothness constraint and the umbilical point ap-
proximation.27 28 The approach taken here is to as-
sume that surfaces are constrained by their global
statistical structure and to apply an associative learn-
ing algorithm to learn a shape-from-shading operator
which embodies those constraints. Theoretically, the
form of the constraints need not be known a priori, if a
test set of natural surfaces exists on which the model
may be trained.

As it would be difficult to obtain enough examples of
real surfaces to adequately span the surface space, we
generate the surfaces on which the model will be
trained using a statistical fractal model.29 Random
fractal functions are characterized by their statistical
self-similarity, expressed in the following relationship:

P F(x + - F(x) < y F(y) (16)

F, the random fractal function, and x may be vector-
valued. The fractal dimension, D, of the function F is

D =E+1- H, (17)

where E is the topological dimension of the function.
This relation expresses the invariance of the statistics
of S over changes of scale. For a fractal surface, the
fractal dimension is somewhere between 2 and 3, the
fractional part, in some sense, specifying how much of
3-D space the surface is filling. The fractal dimension
may be related to the power spectrum of F by

S(f) = 1/f, b = 3-2(D -E). (18)

For spatially isotropic surfaces, f corresponds to radial
spatial frequency, so the power spectrum (and thus,
the autocorrelation function) is circularly symmetric.
This last relation provides the means by which we
generate random pseudofractal surfaces. We filter
Gaussian white noise through a filter with the appro-
priate power spectrum to generate a lattice of surface
depths. The parameters needed to specify such a
surface are the fractal dimension, the cutoff frequen-
cies of the generating filter (if we bandpass the sur-
faces), and the variance of the surface depths.

B. Linear Estimation of Shape-from-Shading

The ideal shape-from-shading operator will neces-
sarily be nonlinear, due to the nonlinearity in the imag-
ing Eq. (15). It is of interest, however, to study the
performance of linear shape-from-shading operators.
Such an operator will perform poorly at boundaries
and regions of shadow; however, it may otherwise be
quite accurate and can be used to derive a first-guess
for a nonlinear model which incorporates contour and
shadow information.

We used the Widrow-Hoff error-correcting learning
rule to derive a shape-from-shading operator from ex-
amples of shapes and their images, With the assump-
tion that surfaces are examples of a wide-sense station-
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ary process (their statistics are spatially invariant), we
can derive a local convolution operator by associating
the shape representation at a point on a surface with
the image of the surrounding region. The resulting
rows of the association matrix will be FIR filters which
can be applied to large images to reconstruct surface
representations.

Images were represented as vectors of luminance
contrast values at each point in the image:

I(x, y) =L(xy) - E(L)
E(L)

(19)

where E[-] indicates expected value. A simple statisti-
cal analysis of the images of isotropic surfaces will
serve to motivate the selection of luminance contrast
as the image representation. A principal requirement
for the input representation is that it be constant-
mean for different settings of the surface generation
parameters. If we represent the light source direction
vector as (lx, l, ) and the surface normal at a point as
(n., n, n,), for the mean luminance in the image we
have

E[L] = E[k(lxnx + lyny + 12n,)],

E[L] = k(l.E[nxi + lYE[ny] + 1E[n]).

Due to the isotropic nature of the surfaces, E[nx] =
E[ny] = 0, giving

E[L] = kE[n,]l,. (20)

As E[n.] is a monotonic decreasing function of the
variance of surface depths, raw luminance values are
clearly an inappropriate input representation. A sec-
ond requirement for the input representation is that it
be invariant to changes in surface albedo and incident
light flux (captured in the constant k above). Image
contrast, as given by Eq. (19), fulfills both of these
requirements, as k cancels out and E[I] = 0 for all
spatially isotropic surfaces.

Surfaces were represented as vectors of surface nor-
mal components at each point. Thus, we are associat-
ing an n X n image with the three surface normal
components at the center point of a surface. The rows
of the resulting association matrix may be applied as
convolution filters to images to estimate the surface
normals at each point in the images. Simulations were
also run using surface orientation as the output
representation; however, the resulting filters did not
perform as well as those for surface normals, and so will
not be described here.

We generated a set of 800 29 X 29 pixel surfaces and
their corresponding images for fractal surfaces with
dimension 2.2. The images were generated using a
model light source at a tilt of 450 and a slant (away
from the viewer) of 35°. The images were associated
with the middle points of their corresponding surfaces
to derive the convolution filters. These filters can be
used for light source tilts other than 450 by reorienting
them relative to the new light source direction. Figure
3 shows the impulse response of the learned filters for
the x and y components of the surface normals. Fig-
ure 4 shows two test surfaces and the surfaces recon-

Fig. 3. (a) and (b) Shape-from-shading filters for the x and y
components of the surface normals, respectively. These are FIR
filters with a spatial extent of twenty-nine pixels. Note that these
filters are bandpass, resulting in a loss of very low and very high

frequency components of surface shape.

_ ~ [b ~J /

Fig. 4. Surfaces used to create images on which the shape-from-
shading filters were tested: (a) an artificially generated surface; (c)
a low-pass pseudofractal with dimension 2.2, with an upper cutoff
frequency of 0.33 cycles/point. (b) and (d) Surfaces reconstructed
by the filters from the images of (a) and (c). These plots were

generated by integrating the derived surface normals.
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structed using the learned filters. Note that the first is
an artificially generated smooth surface and the sec-
ond is a low-pass filtered fractal surface. It is particu-
larly interesting to note that the model performed well
on a regular surface not generated by the same algo-
rithm as those on which the model was trained. The
only significant error in the reconstruction is the
smoothing of the discontinuities, as should be expect-
ed from a linear operator.

The model makes a significant psychological predic-
tion: the slant bias and low-frequency undulations in
the surface will be lost in the reconstruction. The first
prediction results from the form of the input vectors.
Although the image contrasts for the training phase of
the simulations were generated using the statistical
mean of the image luminances, those used during test-
ing were computed using the sample mean luminance
of the test image. Thus, inputs to the model will
always be zero mean. The significance of this is that
the reconstructed surface normals will be zero mean.
This is intuitively appealing, as changes in mean lumi-
nance caused by such a bias can be easily attributed to
changes in the surface albedo or in the intensity of the
incident light flux. The second prediction, that low-
frequency changes in shape will not be reconstructed,
is attributable to the bandpass nature of the derived
filters. It will be interesting to see if psychophysical
studies bear out these predictions.
V. Stereo

The problem of extracting the structure of the envi-
ronment from stereo cues has traditionally been con-
sidered as a two-part problem. The correspondence
problem refers to the pairing of points in the left and
right eye images that correspond to a single point on
the object's surface. Once these correspondences are
known, along with the fixation point, the relative
depths of points along the surface may be reconstruct-
ed using simple trigonometric relations. Since the
introduction of random-dot stereograms and the sub-
sequent popularity of computational approaches to
modeling stereo, it has become evident that the corre-
spondence problem is not a trivial one. Nonetheless,
the fact that the problem can be solved by low-level
visual information is apparent by viewing random-dot
stereograms. 3 0 From a computational point of view,
however, it is difficult to specify factors that constrain
the problem sufficiently to give a stable surface per-
cept, despite the large number of solutions consistent
with the image data.

The approach generally taken in computational
models of structure from stereo is to impose physical
constraints on the problem to limit the solution space
in a way that predicts human perceptual solutions.
Marr and poggio3l were perhaps the first to explicitly
define some of these constraints. They implemented
an iterative cooperative algorithm that solves the
problem of eliminating false matches using unique-
ness, continuity, and compatibility constraints. In
addition to these explicit constraints, the model re-
quires the manipulation of a neighborhood size, an
inhibition constant, and the threshold value. While

Marr and Poggio31 showed that their model is able to
solve a reasonably wide range of random-dot stereo-
grams, different complex combinations of the con-
straints and associated parameters are optimal for dif-
ferent stimuli.

The approach we have taken has a different focus
than previous models in that it attempts to solve the
correspondence problem implicitly by directly relating
the images on the two retinas to the way the geometry
of the environment is changing locally with respect to
the fixation point. This scheme emphasizes the im-
portance of the roles of input/output coding on the
appropriateness of the algorithm. Thus, while the
emphasis in past models has been to eliminate false
matches, in this model the pattern of false matches is
assumed to be useful for determining the true depth
properties of a surface. Thus, in a natural unmarked
surface, when the depth is not changing, false matches
are found at all disparity cells at that location and at
neighboring cells as well, given a primitive such as
change in intensity. This assumes that no change in
intensity is indeed available as information for the
system. When depth does change, there is a corre-
sponding pattern of activity in the cells, again across a
variety of spatial locations, that indicates the presence
and depth placement of an edge.

We have applied associative learning to the stereo
problem to allow appropriate constraints to develop
naturally in the system on the basis of the particular
set of stimuli presented. The surfaces were generated
by a discrete Gaussian Markov process (the probabili-
ty of depth was conditional on the previous neighbor).
However, we make no particular claims about the gen-
eral validity of such a surface model. No a priori
decisions are made about smoothness in the model.
Smoothness is defined as a constraint in this model on
the basis of the sample images learned. As in the later
Marr and Poggio model,32 this model is aimed at solv-
ing a class of surfaces, rather than single surfaces,
which require individual adjustments of the model's
parameters.

The surfaces were 1-D, Lambertian, and illuminated
by a point source at infinity. The surface was viewed
along the axis of random depth change, which made
occlusion relatively rare. The images are made in an
optically natural way that simulates two eyes con-
verged to a fixation point. This adds a regularity to
the model in that the disparity at the fixation point, by
definition, is always zero. Thus, the issue to be solved
is how the disparities change going out from the point
of fixation to the periphery. Consistent with this, the
resolution of the system decreases in the periphery.
The input (image representation) to the model con-
sists of the states of a small number of disparity-sensi-
tive cells that fire to the presence of relatively sharp
intensity changes in the left and right eyes at different
disparities. The firing rate of these cells is given by

k
1- rid + k (21)

where 1i and ri are the components of the vector of
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Fig. 5. (a) and (b) Examples of stereo reconstructions. Depth is plotted as a function of spatial position. The open symbols show original
surface depths generated by a Gaussian Markov process quantized to five levels. The solid symbols show the linear estimate of relative depth

computed from image data consisting of luminance gradients.

intensity change for the left and right eyes, respective-
ly, d is a disparity ofiset, and k is a constant. Thus, a
perfect match activates the cell to its full firing rate
while less perfect matches activate the cell to a lesser
degree. An activation function is necessary due to the
fact that the surface sample is taken in a natural way
by two eyes. As such, the contrast of an edge is not
often an exact match when sampled by the left and
right eyes, due to the different angle each eye makes
with the surface. A small bank of these cells, with both
convergent and divergent disparity sensitivities is lo-
cated at each spatial location in the image. This is
meant to emulate the kinds of disparity information
the visual system may have to work with.3 3 For this
simple model, input to the model consisted of five
disparity cells: two with convergent sensitivities, two
with divergent sensitivities, and a zero-disparity cell
were used at each spatial position in the retinas. The
output of the model was simply the map of surface
depth changes.

Connection strengths between the input and output
nodes were learned associatively using a Widrow-Hoff
error correction technique with 400 surfaces created
with the Markov process. The model was tested with
thirty new images created in the same manner as the
learned images. The cosine between the actual depth
map of the tested surface and the depth map produced
by the system was used as a performance measure.
The average cosine for the thirty vectors tested was
0.765. This indicates good performance, especially
given the fact that the images potentially include oc-
cluded regions. The form of the inverse mapping is
illustrated in Fig. 6. Here we see the average connec-
tion strengths that developed in the disparity banks
along the diagonal of the matrix. The constructs that
developed naturally show a coherent pattern of excita-
tion to same-disparity cells and inhibition in the sur-
rounding disparity cells. These constraints are not
unlike those imposed by Marr and Poggio and a variety
of other stereo modelers. Some sample images and
their reconstructions are shown in Fig. 5. We are

Ln

11

lu

Disparity [ells

Fig. 6. Mean connection strengths taken across each of the dispari-
ty-selective cells in cell banks at positions along the diagonal of the
matrix. A pattern of excitation is seen between like-disparity cells

and inhibition is seen between different-disparity cells.

currently working on a backpropagation algorithm 6 to
deal more effectively with the nonlinear nature of the
image formation process.

The experiences of many computational stereo mod-
elers over the past two decades have indicated that
unique solutions to the ill-posed stereo problem re-
quire either that we derive an algorithm that will work
for a large number of images if supplied with the prop-
er constraints and parameters, or that we delineate
classes of images on which to work. Neither of these
approaches is entirely satisfactory. Thus, while mod-
eling approaches are able to work with algorithms that
solve the stereo problem given the appropriate con-
straints, perhaps the most interesting questions are
those that tell us what sets of images/surfaces the brain
groups together and constrains as a whole.
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VI. Conclusion

We have shown that, given models for image and
scene representation and an associative algorithm, one
can learn to estimate scene parameters from images.
Although linear estimators are quite restrictive, they
work well when applied away from discontinuities.
This paradigm may be particularly useful as more
sophisticated statistical scene models are developed.
Together with recent developments in nonlinear learn-
ing algorithms6 and possible neuronal solutions of non-
quadratic cost functions,'7 we have potentionally pow-
erful tools for exploring early vision.
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