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SERENO 

IMPLEMENTING STAGES OF MOTION ANALYSIS IN NEURAL NETWORKS 
Margaret E. Sereno 

Psychology Department 
Brown University 

Abstract 

A neural model is proposed for human motion perception. The goal of the model is to 
calculate the tvra-dimensional velxity of elements in an image. Unlilce most earlier approaches, 
the present model is structured, in accord with known neurophysiological data. Three distinct 
stages are proposed. At the first level, units are sensitive to the components of motion that are 
perpendicular to the orientation of a moving contour. The second level integrates these initial 
motion measurements to obtain translatlonal motion. The third level uses translatlonal motion 
measurements to compute general three-dimensional motion such as rotation and expansion. The 
model shows a high level of performance in solving the measurement of two-dimensional 
translatlonal motion from local motion information. Most importantly, the present model uses 
nervous system structure as a natural way to formulate constraints. The psychological 
implications of staged motion processing are discussed. 

Visual motion perception serves many important functions, including the segregation of 
objects, the estimation of object motion, the octroi of eye movements, and the estimation of the 
three-dimensional structure of objects & the environment. The operations responsible for the 
perception of motion, however, are not well known. 

As three-dimensional surfaces move in space, they project light onto the eye, forming a 
two-dimensional image of the world that changes with time. The visual system must reconstruct 
a three-dimensional world from this two-dimensional image. This reconstruction can be 
accomplished by using information about the organization of movement in the changing image. 
However, the motion of elements in the two-dimensional image (i.e., their speed and direction) 
is not an inherent property of the image but must be inferred from the varying Intensities of the 
Image. Thus, motion analysis Is often considered a two-stage process (Hildreth, 1963). 

The goel of the first stage is the measurement of two-dimensional motion of elements in an 
image (i.e., extracting the velaity—speed and direction—of moving elements). To accomplish 
this goal there must be initial motion detection and measurement by motion sensors, en 
integration of the initial motion measurements to compute an instantaneous two-dimensional 
velocity field (the so-called "aperture" problem), and the detection of motion discontinuities. 
The second stage consists of an interpretation of the three-dimensional structure of surfaces 
from two-dimensional motion. 

1 present a neural network model of part of the first stage of motion analysis (I.e., the 
integration of initial, local measurements to compute a two-dimensional velxity field). The 
model extracts the true two-dimensional motion of an entire pattern from ambiguous local 
motion information available at the pattern's component contours. In other words, It solves the 
"aperture problem" for rigid two-dimensional motion in the plane. Local motion detectors 
provide ambiguous information because they only measure the component of motion 
perpendicular to the orientation of a moving contour. A family of possible motions exists that can 
give rise to the locally detected motion. The aperture problem, then, reduces to the assignment 
of 8 unique velrcity to an object given only local motion measurements (See Figure I). 
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Hlldreth (1983) has proposed a computational mode) for the measurement of 

two-dimensional motion. In her model, local measurements are obtained from the image and are 

then combined to compute a unique two-dimensional velocity field by applying constraints to 

limit the solution. For example, the "smoothness constraint" is based on the observation that 

objects usually have smooth surfaces. This constraint is implemented by finding the velocity 

field of least variation. The model works well on simple figures fx planar and general 

three-dimensional motion (e.g., rotation and expansion). 
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The basic motivation for formulating the present model is to build more structure into the 

model to enable It to perform transformations on the input data leading to a i//}/(7i/esoM\on. 

This is done by closely adhering to both neurophyslological and psychological data on motion 

analysis. The model is structured in accord with neurophyslological data because I assume that 

the nature of the hardware profoundly affects how the problem is solved. The ultimate goal is to 

integrate the neurophyslological and psychological information to form a more coherent theory 

of motion perception. 

Two idees about the basic operations involved in motion analysis emerge from the 

psychological, psychophysical, neurophyslological, and mathematical work on motion. One is 

that there are primitives of optic flow that are analyzed by specialized neural mechanisms. 

Work on the mathematics of optic flows demonstrates that any flow field can be decomposed into a 

linear vector combination of several basic types: translation, rotation, shear, and dilation 

(Koenderink & Van Doorn, 1976; Longuet-Higgins & Prazdny, 1980). Psychophysical data 

from adaptation studies have provided evidence for translation, rotation, and expansion sensitive 

mechanisms (Regan & Beverly, 1978; Regan, 1986). Also, neurophyslological studies In 

macaque visual cortex (area MST) demonstrate that neurons are sensitive to linear, rotational, 

anddilatlonal motion (Saitoetal., 1986). 

The second Idea Is that the integration of local one-dimensional motion measurements into 

a full two-dimensional velocity field occurs in several stages. Psychophysical studies 

demonstrate that one-dimensional motion measurements are combined to compute 
two-dimensional translational motion (Adelson & Movshon, 1982; Nakayama & Silverman, 
1983). Neurophyslological data suggests that the cnmputation of all types of motion in the 

nervous system does not occur In a single step. A pervasive aspect of the cortical architecture of 
sensory systems is the presence of multiple topographic representations or maps of sensory 

surfaces projecting to each other. Several areas involved in motion analysis in the macaque 

visual cortex include Areas VI, MT, and MST. Area VI neurons are involved in the analysis of 
component motion while some MT neuons respond to linear pattern motion (Movshon, Adelson, 

eizzl, & Newsome, 1985). As previously noted, a recent stud/ of cells In a visual area (MST) 
upstream to area MT has discovered neurons that respond selectively to translating, expanding, 
contracting, and rotating patterns (Saito et al., 1986). 

As a first step, a model Is constructed to solve the aperture problem for rigid motion In 

the plane (i.e., translation). This is accomplished, first, by using some formal observations on 
how to uniquely limit the solution and, second, by structuring the model in accord with 
neurophyslological organization. It is then proposed that this two-dimensional translation 
Information is combined to compute other general motiwts. 

Adelson and Movshon (1982) discuss a solution to unambiguously determine the 
two-dimensional motion of a pattern given the motion of Its local components (See Figure 2). 
The dashed lines indicate the family of global pattern velocities which are consistent with the 

locally measured component velxlty vector. They note that when at least two nonparallel moving 

contours belonging to the same pattern are compared, only one vector is common to both 

one-dimensional families, and it describes the motion of the entire pattern. This vector is the 
point in velxlty space at which the two dashed lines Intersect. 
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This constraint was Implemented in a model (Sereno, 1986) that was structured in accord 

with the following neurophysiological facts. Some neurons in striate cortex (Area VI) are 
selective for orientation, speed and direction of edges. However, they only respond to the 
perpendicular component of motion. Area MT, an area involved in motion analysis, receives a 

direct topographic projection from VI. is selective for the direction and speed of motion of a 
stimulus while having little selectivity for spatial structure, and possesses larger receptive 

fields, indicating spatial summation of its inputs. Moreover, 2 S Z of MT neurons exhibit 

"pattern" direction selectivity, that is. they are selective f x the motion of the pattern as a 

whole (Movshon.Adelson.Gizzi.&Newsome, 1985). 
A "Boltzmann Machine" (Ackley, Hinton, & Sejnowski. 1985) was constrxted with an 

input layer of units representing VI and output layer of units representing area MT. Each unit 

is selective for a specific speed and direction of motion (See Figure 3). Specifically, layer Vt 

contains 32 units (8 directions. 2 speeds and 2 locations) while layer MT contains 24 units (8 

directions. 3 speeds and 1 location). VI units respond only to the component of motion 

perpendicular to the orientation they are sensitive to; MT units respond to two-dimensional 

motion. 
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The formal solution described above was hardwired into the system by having each VI unit 

project to the family of pattern velaities in the output layer that could describe the true motion 

underlying its response. With this predefined connectivity, when a number of differently 

xiented line segments belonging to the same moving pattern are input to the system, a gradient 

descent algorithm results in the system changing to a configuration in which the activity of the 

output unit describing the pattern motion is selectively enhanced. Figure 4 presents an 

example of a pattern of line segments moving across the two sets of input units (See Figure 4). 

After 20,000 iterations, the output unit describing the pattern velaity Is driven to an "on" 

state lOOX of the time. In addition, a motion illusion (the Split Herringbone Illusion) is 

presented to the model. The alternating columns of lines actually move in opposite directions 

while the perceived motion is perpendicular to these directions, consistent with an "intersection 

of constraints" solution. After 20,000 iterations, the perceived direction is selectively 

enhanced. 
These results demonstrate that the intersection of constraints described above can be 

realized in a two-layered neural network. The specific implementation makes a testable neural 

prediction about how the first layer of neurons (area VI) projects to the second layer of 
neurons (MT) to transform the neural response from selectivity for one-dimwisional motion to 

selectivity for two-dimensional motion. The projection, consequently, produces MT units with a 

wider range and higher cut-off of preferred speeds than Yl units, a finding consistent with 
existing neurophysiological data (Van Essen, 1985). Another important aspect of the model is 

that It predicts that two-dimensional motion measurements result from the Integration of 

one-dimensional motion measurements from nearby spatial locations. 

To summarize, a positive aspect of the model is that it is neurally-based with the result 

that It produces one solution to a given Input. No post hoc assumptions or constraints are needed 
to limit the solution. However, a major limitation of the model is limited to the discrete values 

of speed and direction of movement to which the input units are sensitive. A neurally plausible 

solution to this problem of representing Intermediate values of speed and direction is to let the 

information be carried by an ensemble code. This requires that individual units have continuous 

valued activities. For example, a speed or direction that lies exactly In between the values of 2 

units can be represented by activity in each unit that is 1/2 the maximum activity. Such a 
representation, however, cannot be Implemented on a Boltzmann Machine because the units 

cannot have continuous valued activity. However, it Is not difficult to show that the Intersection 

of constraints illustrated in Figure 2 amounts to a solution of a set of linear equations and hence, 

it can be solved with linear methods that permit continuous-valued output. Therefore, a second 
model was constructed using a simple linear assaiator with error correction, such as that used 

by Anderson (1983) (See Figure 5). 

In the simple linear associative model, the same neurophysiological assumptions hold, 

except that learning can occur. This means that the connection weights are modifiable. The 
matrix. A, of modifiable synaptic weights describes the projection of the input layer of neurons 

to the output layer. The vectors f and g represent the activities across the Input and output 

layers, respectively. Learning occurs when pairs of these vectors, one pair per pattern, ore 

associated to form the connectivity matrix. To do this, two assumptions are made: The first 
assumption Is that a neuron's activity results from the linear summation of its input. That is, 

the activity of each neuron, in the second layer, is determined by the activity of its inputs 

weighted by their connection strengths. Second, the matrix of connection strengths Is 

constructed according to the generalized Hebbian rule for connectivity modification which 

asserts that synaptic strength is porportional to pre- and postsynaptic cell activity. This 

learning rule is used with error correction in which the difference between the true association, 
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T w o a s s u m p t i o n s o f t h e l i n e a r a s s o c i a t i v e m o d e l : 

fj - vector of input layer neuron activities representing 

component velocities for the ith pattern 

gj = vector of output layer neuron activities representing 

pattern velocities for the i^^ pattern 

g^' = vector of output layer neuron activities that results when 

a pattern, f |, is input to the system 

1) Neurons take a linear summation of their input: 

2) Learning Rule: Synaptic strength is proportional to the 

p r o d u c t of pre-synaptic and post-synaptic activities: 

n 

A A = 2 g| f / 

i=1 

Error Correction Procedure: 

AA = k (g| - g-) f^ ^ 

AA is learned and added to the developing A connectivity 

matrix: 

A t + i = A t + A A 

Figure 5 
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g, and the actual association, g'. is learned and added to the developing A connectivity matrix. 

To teach the model, different patterns moving at different velocities are input to the 

system. For each pattern, a vectx, f, describing component velxities and a vectx, g, describing 

pattern velxities are assreiated using error correction. 

After learning is completed, the matrix is tested. The output of each stored input is 

computed. That is, each f is input to the system to get an output g'. The output g' is then compared 

to the true association g by taking the cosine between them. If the vectors are the same, the 

cosine will equal 1. The system Is then tested with nonassoclated vector pairs to see how well the 

system generalizes to new stimuli. 

One simulation will be described to illustrate the performance of the system. For this 
simulation, direction sensitive units are placed every 15 degrees and have bandwidths of 90 
degrees (peak response tapers off to 0, 45 degrees on either side of the peak direction). There 

are 17 peak directions (spanning 180 degrees) and 8 peek speeds (spanning 30 degrees/sec). 
Since each unit is sensitive to both a speed and a direction, a total of 136 units (136 
speed/direction combinations) are available at each location. In this simulation, the system 

learns on 50 patterns and is then tested on these 50 patterns and on 50 new patterns. The 
patterns are composed of 1 to 3 line segments positioned at different angles relative to each 

other. Some example patterns are shown in Figure 6 (See Figure 6). Each pattern is moved at a 

different velxity. 

L i n e a r A s s o c i a t i v e M o d e l 

E x a m p l e P a t t e r n s : 

Figure 6 
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After 15 assxiations per vector pair, the system reaches stable performance and is 

tested. The mean cosine between the true association that the system learns, g, and the actual 

association that the system produces, g', is equal to .98, This represents very good performance. 

Moreover, the mean cosine for the new, nonassxiated vectors is equal to .97. This also 

represents very good performance and demonstrates that the system is able to generalize quite 

well to stimuli it has never seen before. 

To obtain a finer performance measure, a calculation was made to determine one value of 

speed and one value of direction for each pattern. A weighted average was taken In which each 
unit's preferred speed or direction was weighted by its activation level (See Figure 7). The 

mean difference between the weighted average for the real direction (g) and the reconstructed 

direction (g") for old patterns was 3.0 degrees while the mean difference for new patterns was 

4.2 degrees. The mean difference between weighted averages for real and reconstructed speeds 

for old patterns was 1.1 degrees per second compared to 1.6 degrees per second for new 

patterns. 

Weighted Average Calculation 

pattern speed = Zj (Pj * S|) / Z| Tj 

pattern direction « Ij (Pj * dj) / 2j Tj 

where 1 = unit number 

r = activation level of unit 

s = speed to which unit is m o s t sensitive 

d = direction to which unit is m o s t sensitive 

Figure 7 

In sum, the model shows excellent performance for extracting two-dimensional 

translational motion from one-dimensional motion information. 
The present model is then extended to handle the two-dimensional projected velocity of 

objects moving in depth (e.g., in rotating and expanding objects). Again, the model is constrxted 

talcing into account the relevant neurophysiological data. Saito et al. (1986), for example, 

describe three classes of directionally selective cells with large receptive fields (about Z S 

degrees compared to a mean of about 6 degrees for MT cells) in area MST, an area which receives 

a direct projection from MT. One class of cells is sensitive to translation in the plane, a second 

class (size-change cells) is selective for expanding or contracting patterns, and a final class 

(rotation cells) is selective for rotating patterns (clockwise or counterclockwise) In the 

frontoparallel plane, or rotating patterns in depth. A common feature of these neurons is that 

the/ respond to appropriate patterns anywhere in their large receptive fields at the expense of 
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being able to precisely signal information about location. Seito et a1. (1986) argue that these 

cells are sensitive to "whole events" of visual motion because they integrate elemental motion 

signals from MT cells. 
These data suggest that the visual syston utilizes several distinct stages for motion 

analysis. In an analogous fashion, the present model takes the output of a second layer that 

responds to two-dimentional linear motion and feeds it into a third layer that responds to motion 

of rotation, dilation, or contraction. 

The proposed model will be tested using complex motion (the combination of simpler 

motions). Moreover, the model will be introduced to moving patterns which give rise to 

illusory perception such as the rotating spiral illusion. In this illusion, a rotating spiral 
appears to expand or contract. The three layers of the present model result in the extraction of 
elemental motion which can then be combined in an ensemble code to compute the perceived 

two-dimensional motion. 

The obvious advantage of such a model is that it makes use of the structure of the nervous 
system as a natural way to constrain the model. Consequently, it can provide Insight Into the 

sequential processes Involved in motion analysis. 
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